These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32344616)

  • 21. Cooling During Exercise: An Overlooked Strategy for Enhancing Endurance Performance in the Heat.
    Stevens CJ; Taylor L; Dascombe BJ
    Sports Med; 2017 May; 47(5):829-841. PubMed ID: 27670904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cooling and performance recovery of trained athletes: a meta-analytical review.
    Poppendieck W; Faude O; Wegmann M; Meyer T
    Int J Sports Physiol Perform; 2013 May; 8(3):227-42. PubMed ID: 23434565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cold-Water Immersion Cooling Rates in Football Linemen and Cross-Country Runners With Exercise-Induced Hyperthermia.
    Godek SF; Morrison KE; Scullin G
    J Athl Train; 2017 Oct; 52(10):902-909. PubMed ID: 28937782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion.
    Siegel R; Maté J; Watson G; Nosaka K; Laursen PB
    J Sports Sci; 2012; 30(2):155-65. PubMed ID: 22132792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Should athletes return to activity after cryotherapy?
    Pritchard KA; Saliba SA
    J Athl Train; 2014; 49(1):95-6. PubMed ID: 23724775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cumulative pre-cooling methods do not enhance cycling performance in tropical climate.
    Collado A; Rinaldi K; Hermand E; Hue O
    PLoS One; 2023; 18(10):e0291951. PubMed ID: 37824451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Effects of Pre-Exercise Ice-Slurry Ingestion on Thermoregulation and Exercise Performance of Highly Trained Athletes: A Scoping Review.
    Gopathi P; Tiwari KH; Kalpana K
    Int J Exerc Sci; 2023; 16(2):1398-1412. PubMed ID: 38288403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological responses to incremental exercise in the heat following internal and external precooling.
    James CA; Richardson AJ; Watt PW; Gibson OR; Maxwell NS
    Scand J Med Sci Sports; 2015 Jun; 25 Suppl 1():190-9. PubMed ID: 25943670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ergogenic effects of precooling with cold water immersion and ice ingestion: A meta-analysis.
    Choo HC; Nosaka K; Peiffer JJ; Ihsan M; Abbiss CR
    Eur J Sport Sci; 2018 Mar; 18(2):170-181. PubMed ID: 29173092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cooling Rates of Hyperthermic Humans Wearing American Football Uniforms When Cold-Water Immersion Is Delayed.
    Miller KC; Di Mango TA; Katt GE
    J Athl Train; 2018 Dec; 53(12):1200-1205. PubMed ID: 30562055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of mixed-method, part-body pre-cooling procedures for team-sport athletes training in the heat.
    Duffield R; Steinbacher G; Fairchild TJ
    J Strength Cond Res; 2009 Dec; 23(9):2524-32. PubMed ID: 19910821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermoregulatory responses to ice-slush beverage ingestion and exercise in the heat.
    Stanley J; Leveritt M; Peake JM
    Eur J Appl Physiol; 2010 Dec; 110(6):1163-73. PubMed ID: 20714767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Body Anthropometric Characteristics and Rectal Temperature Cooling Rates in Women With Hyperthermia.
    Koenig FS; Miller KC; O'Connor P; Amaria N
    J Athl Train; 2022 May; 57(5):464-469. PubMed ID: 35230443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A vascular mechanism to explain thermally mediated variations in deep-body cooling rates during the immersion of profoundly hyperthermic individuals.
    Caldwell JN; van den Heuvel AMJ; Kerry P; Clark MJ; Peoples GE; Taylor NAS
    Exp Physiol; 2018 Apr; 103(4):512-522. PubMed ID: 29345019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimizing Cold Water Immersion for Exercise-Induced Hyperthermia: A Meta-analysis.
    Zhang Y; Davis JK; Casa DJ; Bishop PA
    Med Sci Sports Exerc; 2015 Nov; 47(11):2464-72. PubMed ID: 25910052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of different external cooling placements prior to and during exercise on athletic performance in the heat: A systematic review and meta-analysis.
    Jiang D; Yu Q; Liu M; Dai J
    Front Physiol; 2022; 13():1091228. PubMed ID: 36703929
    [No Abstract]   [Full Text] [Related]  

  • 37. First aid cooling techniques for heat stroke and exertional hyperthermia: A systematic review and meta-analysis.
    Douma MJ; Aves T; Allan KS; Bendall JC; Berry DC; Chang WT; Epstein J; Hood N; Singletary EM; Zideman D; Lin S;
    Resuscitation; 2020 Mar; 148():173-190. PubMed ID: 31981710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduction of Physiological Strain Under a Hot and Humid Environment by a Hybrid Cooling Vest.
    Chan APC; Yang Y; Wong FKW; Yam MCH; Wong DP; Song WF
    J Strength Cond Res; 2019 May; 33(5):1429-1436. PubMed ID: 28195970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cooling athletes with a spinal cord injury.
    Griggs KE; Price MJ; Goosey-Tolfrey VL
    Sports Med; 2015 Jan; 45(1):9-21. PubMed ID: 25119157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute whole-body cooling for exercise-induced hyperthermia: a systematic review.
    McDermott BP; Casa DJ; Ganio MS; Lopez RM; Yeargin SW; Armstrong LE; Maresh CM
    J Athl Train; 2009; 44(1):84-93. PubMed ID: 19180223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.