These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32344621)

  • 1. Comparative Mortality and Adaptation of a Smurf Assay in two Species of Tenebrionid Beetles Exposed to
    Zanchi C; Lindeza AS; Kurtz J
    Insects; 2020 Apr; 11(4):. PubMed ID: 32344621
    [No Abstract]   [Full Text] [Related]  

  • 2. Infection of Tribolium castaneum with Bacillus thuringiensis: quantification of bacterial replication within cadavers, transmission via cannibalism, and inhibition of spore germination.
    Milutinović B; Höfling C; Futo M; Scharsack JP; Kurtz J
    Appl Environ Microbiol; 2015 Dec; 81(23):8135-44. PubMed ID: 26386058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The red flour beetle as a model for bacterial oral infections.
    Milutinović B; Stolpe C; Peuβ R; Armitage SA; Kurtz J
    PLoS One; 2013; 8(5):e64638. PubMed ID: 23737991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-species comparison of the gut: Differential gene expression sheds light on biological differences in closely related tenebrionids.
    Oppert B; Perkin L; Martynov AG; Elpidina EN
    J Insect Physiol; 2018 Apr; 106(Pt 2):114-124. PubMed ID: 28359776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbiota Plays a Role in Oral Immune Priming in Tribolium castaneum.
    Futo M; Armitage SA; Kurtz J
    Front Microbiol; 2015; 6():1383. PubMed ID: 26779124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digestive proteolysis organization in two closely related Tenebrionid beetles: red flour beetle (Tribolium castaneum) and confused flour beetle (Tribolium confusum).
    Vinokurov KS; Elpidina EN; Zhuzhikov DP; Oppert B; Kodrik D; Sehnal F
    Arch Insect Biochem Physiol; 2009 Apr; 70(4):254-79. PubMed ID: 19294681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of C1 family cysteine peptidases in the larval gut of Тenebrio molitor and Tribolium castaneum.
    Martynov AG; Elpidina EN; Perkin L; Oppert B
    BMC Genomics; 2015 Feb; 16(1):75. PubMed ID: 25757364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral Immune Priming Treatment Alters Microbiome Composition in the Red Flour Beetle
    Korša A; Lo LK; Gandhi S; Bang C; Kurtz J
    Front Microbiol; 2022; 13():793143. PubMed ID: 35495655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenerational Developmental Effects of Immune Priming in the Red Flour Beetle
    Schulz NKE; Sell MP; Ferro K; Kleinhölting N; Kurtz J
    Front Physiol; 2019; 10():98. PubMed ID: 30837885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A specific binding protein from Tenebrio molitor for the insecticidal toxin of Bacillus thuringiensis subsp. tenebrionis.
    Belfiore CJ; Vadlamudi RK; Osman YA; Bulla LA
    Biochem Biophys Res Commun; 1994 Apr; 200(1):359-64. PubMed ID: 8166706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomical changes of Tenebrio molitor and Tribolium castaneum during complete metamorphosis.
    Vommaro ML; Donato S; Caputo S; Agostino RG; Montali A; Tettamanti G; Giglio A
    Cell Tissue Res; 2024 Apr; 396(1):19-40. PubMed ID: 38409390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study on the effect of two Bacillus thuringiensis strains of the same serotype on three coleopteran pests of stored wheat.
    Abdel-Razek AS
    J Egypt Soc Parasitol; 2002 Aug; 32(2):415-24. PubMed ID: 12214919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased survival in the red flour beetle after oral priming with bacteria-conditioned media.
    Milutinović B; Fritzlar S; Kurtz J
    J Innate Immun; 2014; 6(3):306-14. PubMed ID: 24216503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral immune priming with Bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae.
    Greenwood JM; Milutinović B; Peuß R; Behrens S; Esser D; Rosenstiel P; Schulenburg H; Kurtz J
    BMC Genomics; 2017 Apr; 18(1):329. PubMed ID: 28446171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of the Sudanese Bacillus thuringiensis and related bacterial strains for their efficacy against Helicoverpa armigera and Tribolium castaneum.
    Gorashi NE; Tripathi M; Kalia V; Gujar GT
    Indian J Exp Biol; 2014 Jun; 52(6):637-49. PubMed ID: 24956895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probiotic
    Grau T; Vilcinskas A; Joop G
    Front Microbiol; 2017; 8():1261. PubMed ID: 28736550
    [No Abstract]   [Full Text] [Related]  

  • 17. Tribolium castaneum immune defense genes are differentially expressed in response to Bacillus thuringiensis toxins sharing common receptor molecules and exhibiting disparate toxicity.
    Contreras E; Benito-Jardón M; López-Galiano MJ; Real MD; Rausell C
    Dev Comp Immunol; 2015 Jun; 50(2):139-45. PubMed ID: 25684675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tribolium castaneum Apolipophorin-III acts as an immune response protein against Bacillus thuringiensis Cry3Ba toxic activity.
    Contreras E; Rausell C; Real MD
    J Invertebr Pathol; 2013 Jul; 113(3):209-13. PubMed ID: 23602900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Midgut bacteria required for Bacillus thuringiensis insecticidal activity.
    Broderick NA; Raffa KF; Handelsman J
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15196-9. PubMed ID: 17005725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuropeptides of the beetle, Tenebrio molitor identified using MALDI-TOF mass spectrometry and deduced sequences from the Tribolium castaneum genome.
    Weaver RJ; Audsley N
    Peptides; 2008 Feb; 29(2):168-78. PubMed ID: 18201799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.