These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 32344802)

  • 21. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation.
    Yousaf AM; Kim DW; Oh YK; Yong CS; Kim JO; Choi HG
    Int J Nanomedicine; 2015; 10():1819-30. PubMed ID: 25784807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects.
    Cherniakov I; Domb AJ; Hoffman A
    Expert Opin Drug Deliv; 2015 Jul; 12(7):1121-33. PubMed ID: 25556987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A New Challenge for the Old Excipient Calcium Carbonate: To Improve the Dissolution Rate of Poorly Soluble Drugs.
    Ambrogi V
    Pharmaceutics; 2023 Jan; 15(1):. PubMed ID: 36678929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In-Vitro Drug Dissolution Studies in Medicinal Compounds.
    Bozal-Palabiyik B; Uslu B; Ozkan Y; Ozkan SA
    Curr Med Chem; 2018; 25(33):4020-4036. PubMed ID: 29577852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative studies of the effects of novel excipients amino acids with cyclodextrins on enhancement of dissolution and oral bioavailability of the non-ionizable drug carbamazepine.
    Abou-Taleb HA; Fathalla Z; Abdelkader H
    Eur J Pharm Sci; 2020 Dec; 155():105562. PubMed ID: 32966851
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Promising strategies for improving oral bioavailability of poor water-soluble drugs.
    Rocha B; de Morais LA; Viana MC; Carneiro G
    Expert Opin Drug Discov; 2023 Jun; 18(6):615-627. PubMed ID: 37157841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BCS class IV drugs: Highly notorious candidates for formulation development.
    Ghadi R; Dand N
    J Control Release; 2017 Feb; 248():71-95. PubMed ID: 28088572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amorphous Solid Dispersions or Prodrugs: Complementary Strategies to Increase Drug Absorption.
    Rumondor ACF; Dhareshwar SS; Kesisoglou F
    J Pharm Sci; 2016 Sep; 105(9):2498-2508. PubMed ID: 26886316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving the Dissolution of Triclabendazole from Stable Crystalline Solid Dispersions Formulated for Oral Delivery.
    Real D; Orzan L; Leonardi D; Salomon CJ
    AAPS PharmSciTech; 2019 Dec; 21(1):16. PubMed ID: 31807963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro evaluation of extemporaneously compounded immediate-release capsules with premixed excipients, based on the biopharmaceutics classification system (BCS) of the drugs.
    Pinheiro VA; Danopoulos P; Demirdjian L; Nogueira RJ; Dubois F
    Int J Pharm Compd; 2013; 17(5):424-31. PubMed ID: 24459788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing the potential of solid dispersions to improve dissolution rate and bioavailability of valsartan: In vitro-in silico approach.
    Medarević D; Cvijić S; Dobričić V; Mitrić M; Djuriš J; Ibrić S
    Eur J Pharm Sci; 2018 Nov; 124():188-198. PubMed ID: 30144529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formulation Studies of Solid Self-Emulsifying Drug Delivery System of Ivermectin.
    Patel VP; Lakkad HA; Ashara KC
    Folia Med (Plovdiv); 2018 Dec; 60(4):580-593. PubMed ID: 31188767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dramatic improvement in dissolution rate of albendazole by a simple, one-step, industrially scalable technique.
    Ghanbarzadeh S; Khalili A; Jouyban A; Emami S; Javadzadeh Y; Solhi M; Hamishehkar H
    Res Pharm Sci; 2016 Dec; 11(6):435-444. PubMed ID: 28003836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyclodextrins as Drug Carriers in Pharmaceutical Technology: The State of the Art.
    Conceicao J; Adeoye O; Cabral-Marques HM; Lobo JMS
    Curr Pharm Des; 2018; 24(13):1405-1433. PubMed ID: 29256342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overview of solidification techniques for self-emulsifying drug delivery systems from industrial perspective.
    Mandić J; Zvonar Pobirk A; Vrečer F; Gašperlin M
    Int J Pharm; 2017 Nov; 533(2):335-345. PubMed ID: 28528850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissolution and Solubility Enhancement of the Highly Lipophilic Drug Phenytoin via Interaction with Poly(N-isopropylacrylamide-co-vinylpyrrolidone) Excipients.
    Widanapathirana L; Tale S; Reineke TM
    Mol Pharm; 2015 Jul; 12(7):2537-43. PubMed ID: 26046484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a solid supersaturatable self-emulsifying drug delivery system of docetaxel with improved dissolution and bioavailability.
    Chen Y; Chen C; Zheng J; Chen Z; Shi Q; Liu H
    Biol Pharm Bull; 2011; 34(2):278-86. PubMed ID: 21415541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solid self-nanoemulsifying delivery systems as a platform technology for formulation of poorly soluble drugs.
    Bansal T; Mustafa G; Khan ZI; Ahmad FJ; Khar RK; Talegaonkar S
    Crit Rev Ther Drug Carrier Syst; 2008; 25(1):63-116. PubMed ID: 18540836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of excipients in successful development of self-emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS).
    Rahman MA; Hussain A; Hussain MS; Mirza MA; Iqbal Z
    Drug Dev Ind Pharm; 2013 Jan; 39(1):1-19. PubMed ID: 22372916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing.
    Alhijjaj M; Belton P; Qi S
    Eur J Pharm Biopharm; 2016 Nov; 108():111-125. PubMed ID: 27594210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.