BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32344884)

  • 1. Effect of the Thermal History on the Crystallinity of Poly (L-lactic Acid) During the Micromolding Process.
    Takehara H; Hadano Y; Kanda Y; Ichiki T
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32344884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of polymer microstructures for MEMS: sacrificial layer micromolding and patterned substrate micromolding.
    Ferrell N; Woodard J; Hansford D
    Biomed Microdevices; 2007 Dec; 9(6):815-21. PubMed ID: 17564840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miscibility evaluation of poly(L-lactic acid)/poly(lactic acid-co-lysine) blends.
    Yao J; Zhang S; Li W; Li Y
    J Appl Biomater Funct Mater; 2016 Jul; 14(3):e230-9. PubMed ID: 27417421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of nanoclay on isothermal cold crystallization kinetics and polymorphism of poly(L-lactic acid) nanocomposites.
    Vasanthan N; Ly H; Ghosh S
    J Phys Chem B; 2011 Aug; 115(31):9556-63. PubMed ID: 21718003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of PDLA and Amide Compounds as Mixed Nucleating Agents on Crystallization Behaviors of Poly (l-lactic Acid).
    Khwanpipat T; Seadan M; Suttiruengwong S
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29976863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymorphic Crystallization and Crystalline Reorganization of Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Mixture Influenced by Blending with Poly(vinylidene fluoride).
    Yu C; Han L; Bao J; Shan G; Bao Y; Pan P
    J Phys Chem B; 2016 Aug; 120(32):8046-54. PubMed ID: 27414064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Thermal History on the Fast Crystallization of Poly(l-Lactide) with Soluble-Type Nucleators and Shear Flow.
    Shen T; Ma P; Yu Q; Dong W; Chen M
    Polymers (Basel); 2016 Dec; 8(12):. PubMed ID: 30974706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systemic approach toward optimization of the hot embossing of poly-L-lactic acid for biomedical applications.
    Belligundu S; Shiakolas PS; Pandey A; Aswath PB
    J Biomed Mater Res B Appl Biomater; 2008 May; 85(2):469-77. PubMed ID: 18076089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exclusive Stereocomplex Crystallization of Linear and Multiarm Star-Shaped High-Molecular-Weight Stereo Diblock Poly(lactic acid)s.
    Han L; Shan G; Bao Y; Pan P
    J Phys Chem B; 2015 Nov; 119(44):14270-9. PubMed ID: 26457767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between the Stereocomplex Crystallization Behavior and Mechanical Properties of PLLA/PDLA Blends.
    Park HS; Hong CK
    Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34199577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and Properties of Stereocomplex of Poly(lactic acid) and Its Amphiphilic Copolymers Containing Glucose Groups.
    Qi L; Zhu Q; Cao D; Liu T; Zhu KR; Chang K; Gao Q
    Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32244536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal behavior and crystal structure of poly(L-lactic acid) with 1,3:2,4-dibenzylidene-D-sorbitol.
    Lai WC
    J Phys Chem B; 2011 Sep; 115(38):11029-37. PubMed ID: 21838279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PCL-PLLA Semi-IPN Shape Memory Polymers (SMPs): Degradation and Mechanical Properties.
    Woodard LN; Page VM; Kmetz KT; Grunlan MA
    Macromol Rapid Commun; 2016 Dec; 37(23):1972-1977. PubMed ID: 27774684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Evolution in Isothermal Crystallization Process of Poly(L-lactic acid) Enhanced by Silk Fibroin Nano-Disc.
    Pandey AK; Katiyar V; Takagi H; Shimizu N; Igarashi N; Sasaki S; Sakurai S
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31185630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical and thermal property characterization of poly-l-lactide (PLLA) scaffold developed using pressure-controllable green foaming technology.
    Sheng SJ; Hu X; Wang F; Ma QY; Gu MF
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():612-622. PubMed ID: 25686990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro cell response to differences in poly-L-lactide crystallinity.
    Park A; Cima LG
    J Biomed Mater Res; 1996 May; 31(1):117-30. PubMed ID: 8731156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Amino Hyperbranched Polymer-Modified Carbon Nanotubes on the Crystallization Behavior of Poly (
    Shen B; Lu S; Sun C; Song Z; Zhang F; Kang J; Cao Y; Xiang M
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallization-Induced Polymer Scaffold Formation in the Polymer/Drug Delivery System Poly(l-lactic acid)/Ethyl Butylacetylaminopropionate (PLLA/IR3535).
    Du F; Yener HE; Hillrichs G; Boldt R; Androsch R
    Biomacromolecules; 2021 Sep; 22(9):3950-3959. PubMed ID: 34428015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of conductive poly (3,4-ethylenedioxythiophene) doped with hyaluronic acid/poly (l-lactic acid) composite film for biomedical application.
    Wang S; Guan S; Wang J; Liu H; Liu T; Ma X; Cui Z
    J Biosci Bioeng; 2017 Jan; 123(1):116-125. PubMed ID: 27498308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic, alkaline, and autocatalytic degradation of poly(L-lactic acid): effects of biaxial orientation.
    Tsuji H; Ogiwara M; Saha SK; Sakaki T
    Biomacromolecules; 2006 Jan; 7(1):380-7. PubMed ID: 16398539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.