BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 32345237)

  • 1. Anti-HER2 induced myeloid cell alterations correspond with increasing vascular maturation in a murine model of HER2+ breast cancer.
    Bloom MJ; Jarrett AM; Triplett TA; Syed AK; Davis T; Yankeelov TE; Sorace AG
    BMC Cancer; 2020 Apr; 20(1):359. PubMed ID: 32345237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trastuzumab improves tumor perfusion and vascular delivery of cytotoxic therapy in a murine model of HER2+ breast cancer: preliminary results.
    Sorace AG; Quarles CC; Whisenant JG; Hanker AB; McIntyre JO; Sanchez VM; Yankeelov TE
    Breast Cancer Res Treat; 2016 Jan; 155(2):273-84. PubMed ID: 26791520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The anti-B7-H4 checkpoint synergizes trastuzumab treatment to promote phagocytosis and eradicate breast cancer.
    Hu X; Liu Y; Zhang X; Kong D; Kong J; Zhao D; Guo Y; Sun L; Chu L; Liu S; Hou X; Ren F; Zhao Y; Lu C; Zhai D; Yuan X
    Neoplasia; 2020 Nov; 22(11):539-553. PubMed ID: 32966956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting of the HER2/HER3 signaling axis overcomes ligand-mediated resistance to trastuzumab in HER2-positive breast cancer.
    Watanabe S; Yonesaka K; Tanizaki J; Nonagase Y; Takegawa N; Haratani K; Kawakami H; Hayashi H; Takeda M; Tsurutani J; Nakagawa K
    Cancer Med; 2019 Mar; 8(3):1258-1268. PubMed ID: 30701699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging biomarkers predict response to anti-HER2 (ErbB2) therapy in preclinical models of breast cancer.
    Shah C; Miller TW; Wyatt SK; McKinley ET; Olivares MG; Sanchez V; Nolting DD; Buck JR; Zhao P; Ansari MS; Baldwin RM; Gore JC; Schiff R; Arteaga CL; Manning HC
    Clin Cancer Res; 2009 Jul; 15(14):4712-21. PubMed ID: 19584166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autocrine CCL5 Effect Mediates Trastuzumab Resistance by ERK Pathway Activation in HER2-Positive Breast Cancer.
    Zazo S; González-Alonso P; Martín-Aparicio E; Chamizo C; Luque M; Sanz-Álvarez M; Mínguez P; Gómez-López G; Cristóbal I; Caramés C; García-Foncillas J; Eroles P; Lluch A; Arpí O; Rovira A; Albanell J; Madoz-Gúrpide J; Rojo F
    Mol Cancer Ther; 2020 Aug; 19(8):1696-1707. PubMed ID: 32404410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasculogenic mimicry is associated with trastuzumab resistance of HER2-positive breast cancer.
    Hori A; Shimoda M; Naoi Y; Kagara N; Tanei T; Miyake T; Shimazu K; Kim SJ; Noguchi S
    Breast Cancer Res; 2019 Aug; 21(1):88. PubMed ID: 31387614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and evaluation of a human CD47/HER2 bispecific antibody for Trastuzumab-resistant breast cancer immunotherapy.
    Zhang B; Shi J; Shi X; Xu X; Gao L; Li S; Liu M; Gao M; Jin S; Zhou J; Fan D; Wang F; Ji Z; Bian Z; Song Y; Tian W; Zheng Y; Xu L; Li W
    Drug Resist Updat; 2024 May; 74():101068. PubMed ID: 38402670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific blockade of VEGF and HER2 pathways results in greater growth inhibition of breast cancer xenografts that overexpress HER2.
    Le XF; Mao W; Lu C; Thornton A; Heymach JV; Sood AK; Bast RC
    Cell Cycle; 2008 Dec; 7(23):3747-58. PubMed ID: 19029832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous distribution of trastuzumab in HER2-positive xenografts and metastases: role of the tumor microenvironment.
    Baker JHE; Kyle AH; Reinsberg SA; Moosvi F; Patrick HM; Cran J; Saatchi K; Häfeli U; Minchinton AI
    Clin Exp Metastasis; 2018 Oct; 35(7):691-705. PubMed ID: 30196384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GDNF induces RET-SRC-HER2-dependent growth in trastuzumab-sensitive but SRC-independent growth in resistant breast tumor cells.
    Gardaneh M; Shojaei S; Kaviani A; Behnam B
    Breast Cancer Res Treat; 2017 Apr; 162(2):231-241. PubMed ID: 28116540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-HER2 antibody therapy using gene-transduced adipocytes for HER2-positive breast cancer.
    Masuda T; Fujimoto H; Teranaka R; Kuroda M; Aoyagi Y; Nagashima T; Sangai T; Takada M; Nakagawa A; Kubota Y; Yokote K; Ohtsuka M
    Breast Cancer Res Treat; 2020 Apr; 180(3):625-634. PubMed ID: 32124135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD47 blockade augmentation of trastuzumab antitumor efficacy dependent on antibody-dependent cellular phagocytosis.
    Tsao LC; Crosby EJ; Trotter TN; Agarwal P; Hwang BJ; Acharya C; Shuptrine CW; Wang T; Wei J; Yang X; Lei G; Liu CX; Rabiola CA; Chodosh LA; Muller WJ; Lyerly HK; Hartman ZC
    JCI Insight; 2019 Dec; 4(24):. PubMed ID: 31689243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and in vivo studies of the combination of IGF1R inhibitor figitumumab (CP-751,871) with HER2 inhibitors trastuzumab and neratinib.
    Chakraborty AK; Zerillo C; DiGiovanna MP
    Breast Cancer Res Treat; 2015 Aug; 152(3):533-44. PubMed ID: 26195122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modelling of trastuzumab-induced immune response in an in vivo murine model of HER2+ breast cancer.
    Jarrett AM; Bloom MJ; Godfrey W; Syed AK; Ekrut DA; Ehrlich LI; Yankeelov TE; Sorace AG
    Math Med Biol; 2019 Sep; 36(3):381-410. PubMed ID: 30239754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly (ADP-ribose) polymerase inhibition enhances trastuzumab antitumour activity in HER2 overexpressing breast cancer.
    García-Parra J; Dalmases A; Morancho B; Arpí O; Menendez S; Sabbaghi M; Zazo S; Chamizo C; Madoz J; Eroles P; Servitja S; Tusquets I; Yelamos J; Lluch A; Arribas J; Rojo F; Rovira A; Albanell J
    Eur J Cancer; 2014 Oct; 50(15):2725-34. PubMed ID: 25128455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel asymmetrical anti-HER2/CD3 bispecific antibody exhibits potent cytotoxicity for HER2-positive tumor cells.
    Yu S; Zhang J; Yan Y; Yao X; Fang L; Xiong H; Liu Y; Chu Q; Zhou P; Wu K
    J Exp Clin Cancer Res; 2019 Aug; 38(1):355. PubMed ID: 31412896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TNFα-Induced Mucin 4 Expression Elicits Trastuzumab Resistance in HER2-Positive Breast Cancer.
    Mercogliano MF; De Martino M; Venturutti L; Rivas MA; Proietti CJ; Inurrigarro G; Frahm I; Allemand DH; Deza EG; Ares S; Gercovich FG; Guzmán P; Roa JC; Elizalde PV; Schillaci R
    Clin Cancer Res; 2017 Feb; 23(3):636-648. PubMed ID: 27698002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HER2-Targeted PET Imaging and Therapy of Hyaluronan-Masked HER2-Overexpressing Breast Cancer.
    Pereira PMR; Ragupathi A; Shmuel S; Mandleywala K; Viola NT; Lewis JS
    Mol Pharm; 2020 Jan; 17(1):327-337. PubMed ID: 31804840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of anti-VEGF on pharmacokinetics, biodistribution, and tumor penetration of trastuzumab in a preclinical breast cancer model.
    Pastuskovas CV; Mundo EE; Williams SP; Nayak TK; Ho J; Ulufatu S; Clark S; Ross S; Cheng E; Parsons-Reponte K; Cain G; Van Hoy M; Majidy N; Bheddah S; dela Cruz Chuh J; Kozak KR; Lewin-Koh N; Nauka P; Bumbaca D; Sliwkowski M; Tibbitts J; Theil FP; Fielder PJ; Khawli LA; Boswell CA
    Mol Cancer Ther; 2012 Mar; 11(3):752-62. PubMed ID: 22222630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.