These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 32345323)
1. Oral delivery of exenatide-loaded hybrid zein nanoparticles for stable blood glucose control and β-cell repair of type 2 diabetes mice. Bao X; Qian K; Yao P J Nanobiotechnology; 2020 Apr; 18(1):67. PubMed ID: 32345323 [TBL] [Abstract][Full Text] [Related]
2. Insulin- and cholic acid-loaded zein/casein-dextran nanoparticles enhance the oral absorption and hypoglycemic effect of insulin. Bao X; Qian K; Yao P J Mater Chem B; 2021 Aug; 9(31):6234-6245. PubMed ID: 34328161 [TBL] [Abstract][Full Text] [Related]
3. Intestinal epithelium penetration of liraglutide via cholic acid pre-complexation and zein/rhamnolipids nanocomposite delivery. Bao X; Qian K; Xu M; Chen Y; Wang H; Pan T; Wang Z; Yao P; Lin L J Nanobiotechnology; 2023 Jan; 21(1):16. PubMed ID: 36647125 [TBL] [Abstract][Full Text] [Related]
4. Sol-gel transition of nanoparticles/polymer mixtures for sustained delivery of exenatide to treat type 2 diabetes mellitus. Oh KS; Kim JY; Yoon BD; Lee M; Kim H; Kim M; Seo JH; Yuk SH Eur J Pharm Biopharm; 2014 Nov; 88(3):664-9. PubMed ID: 25152212 [TBL] [Abstract][Full Text] [Related]
6. Gastrointestinal Responsive Polymeric Nanoparticles for Oral Delivery of Insulin: Optimized Preparation, Characterization, and In Vivo Evaluation. Fang Y; Wang Q; Lin X; Jin X; Yang D; Gao S; Wang X; Yang M; Shi K J Pharm Sci; 2019 Sep; 108(9):2994-3002. PubMed ID: 31047941 [TBL] [Abstract][Full Text] [Related]
7. Utilization of PLGA nanoparticles in yeast cell wall particle system for oral targeted delivery of exenatide to improve its hypoglycemic efficacy. Ren T; Zheng X; Bai R; Yang Y; Jian L Int J Pharm; 2021 May; 601():120583. PubMed ID: 33839225 [TBL] [Abstract][Full Text] [Related]
8. Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo. Ji N; Hong Y; Gu Z; Cheng L; Li Z; Li C J Control Release; 2019 Nov; 313():1-13. PubMed ID: 31622690 [TBL] [Abstract][Full Text] [Related]
9. Oral delivery of bioencapsulated exendin-4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta-TC6 cells. Kwon KC; Nityanandam R; New JS; Daniell H Plant Biotechnol J; 2013 Jan; 11(1):77-86. PubMed ID: 23078126 [TBL] [Abstract][Full Text] [Related]
10. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. Sheng J; He H; Han L; Qin J; Chen S; Ru G; Li R; Yang P; Wang J; Yang VC J Control Release; 2016 Jul; 233():181-90. PubMed ID: 27178809 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of CSK-DEX-PLGA Nanoparticles for the Oral Delivery of Exenatide to Improve Its Mucus Penetration and Intestinal Absorption. Song Y; Shi Y; Zhang L; Hu H; Zhang C; Yin M; Chu L; Yan X; Zhao M; Zhang X; Mu H; Sun K Mol Pharm; 2019 Feb; 16(2):518-532. PubMed ID: 30601014 [TBL] [Abstract][Full Text] [Related]
12. Oral Core-Shell Nanoparticles Embedded in Hydrogel Microspheres for the Efficient Site-Specific Delivery of Magnolol and Enhanced Antiulcerative Colitis Therapy. Wang X; Gu H; Zhang H; Xian J; Li J; Fu C; Zhang C; Zhang J ACS Appl Mater Interfaces; 2021 Jul; 13(29):33948-33961. PubMed ID: 34261306 [TBL] [Abstract][Full Text] [Related]
13. Liver-targeted delivery of insulin-loaded nanoparticles via enterohepatic circulation of bile acids. Zhang Z; Li H; Xu G; Yao P Drug Deliv; 2018 Nov; 25(1):1224-1233. PubMed ID: 29791242 [TBL] [Abstract][Full Text] [Related]
14. The glucose-lowering potential of exenatide delivered orally via goblet cell-targeting nanoparticles. Li X; Wang C; Liang R; Sun F; Shi Y; Wang A; Liu W; Sun K; Li Y Pharm Res; 2015 Mar; 32(3):1017-27. PubMed ID: 25270570 [TBL] [Abstract][Full Text] [Related]
15. A Nanocomposite Vehicle Based on Metal-Organic Framework Nanoparticle Incorporated Biodegradable Microspheres for Enhanced Oral Insulin Delivery. Zhou Y; Liu L; Cao Y; Yu S; He C; Chen X ACS Appl Mater Interfaces; 2020 May; 12(20):22581-22592. PubMed ID: 32340452 [TBL] [Abstract][Full Text] [Related]
16. A Human Glucagon-Like Peptide-1-albumin Recombinant Protein with Prolonged Hypoglycemic Effect Provides Efficient and Beneficial Control of Glucose Metabolism in Diabetic Mice. Li C; Yang M; Hou G; Liu S; Huan Y; Yu D; Sun S; Liu Q; Yan S; Shen Z Biol Pharm Bull; 2017 Sep; 40(9):1399-1408. PubMed ID: 28626167 [TBL] [Abstract][Full Text] [Related]
17. Assessment of Exenatide loaded Biotinylated Trimethylated Chitosan/HP- 55 Nanoparticles. Guo H; Yan X; Tang H; Zhang X Curr Drug Deliv; 2022; 19(1):32-40. PubMed ID: 34126896 [TBL] [Abstract][Full Text] [Related]
18. Long-term oral administration of Exendin-4 to control type 2 diabetes in a rat model. Suzuki K; Kim KS; Bae YH J Control Release; 2019 Jan; 294():259-267. PubMed ID: 30572033 [TBL] [Abstract][Full Text] [Related]
19. An approach for half-life extension and activity preservation of an anti-diabetic peptide drug based on genetic fusion with an albumin-binding aptide. Kim D; Jeon H; Ahn S; Choi WI; Kim S; Jon S J Control Release; 2017 Jun; 256():114-120. PubMed ID: 28457895 [TBL] [Abstract][Full Text] [Related]
20. Safety and Efficacy of Exenatide Once Weekly Plus Dapagliflozin Once Daily Versus Exenatide or Dapagliflozin Alone in Patients With Type 2 Diabetes Inadequately Controlled With Metformin Monotherapy: 52-Week Results of the DURATION-8 Randomized Controlled Trial. Jabbour SA; Frías JP; Hardy E; Ahmed A; Wang H; Öhman P; Guja C Diabetes Care; 2018 Oct; 41(10):2136-2146. PubMed ID: 30082326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]