BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32345326)

  • 1. CPI-613 rewires lipid metabolism to enhance pancreatic cancer apoptosis via the AMPK-ACC signaling.
    Gao L; Xu Z; Huang Z; Tang Y; Yang D; Huang J; He L; Liu M; Chen Z; Teng Y
    J Exp Clin Cancer Res; 2020 Apr; 39(1):73. PubMed ID: 32345326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination Treatment of Biochanin A and Atorvastatin Alters Mitochondrial Bioenergetics, Modulating Cell Metabolism and Inducing Cell Cycle Arrest in Pancreatic Cancer Cells.
    Desai V; Tadinada SM; Shaghaghi H; Summer R; Lai JCK; Bhushan A
    Anticancer Res; 2024 Jun; 44(6):2307-2323. PubMed ID: 38821627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translational assessment of mitochondrial dysfunction of pancreatic cancer from in vitro gene microarray and animal efficacy studies, to early clinical studies, via the novel tumor-specific anti-mitochondrial agent, CPI-613.
    Lee KC; Maturo C; Perera CN; Luddy J; Rodriguez R; Shorr R
    Ann Transl Med; 2014 Sep; 2(9):91. PubMed ID: 25405166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two new adenopeptins B and C inhibit sphere formation of pancreatic cancer cells.
    Tatsuda D; Amemiya M; Nosaka C; Sawa R; Muramatsu H; Igarashi M; Yoshida J; Ohishi T; Kawada M
    J Antibiot (Tokyo); 2024 Feb; 77(2):73-84. PubMed ID: 38001285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction: Porphyrin overdrive rewires cancer cell metabolism.
    Adapa SR; Hunter GA; Amin NE; Marinescu C; Borsky A; Sagatys EM; Sebti SM; Reuther GW; Ferreira GC; Jiang RH
    Life Sci Alliance; 2024 Aug; 7(8):. PubMed ID: 38803226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial Metabolism as a Target for Cancer Therapy.
    Vasan K; Werner M; Chandel NS
    Cell Metab; 2020 Sep; 32(3):341-352. PubMed ID: 32668195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting Altered Energy Metabolism in Colorectal Cancer: Oncogenic Reprogramming, the Central Role of the TCA Cycle and Therapeutic Opportunities.
    Neitzel C; Demuth P; Wittmann S; Fahrer J
    Cancers (Basel); 2020 Jun; 12(7):. PubMed ID: 32610612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism and Potential Targeted Therapeutics.
    Ghoneum A; Abdulfattah AY; Warren BO; Shu J; Said N
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32354000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of PDHA by AMPK Drives TCA Cycle to Promote Cancer Metastasis.
    Cai Z; Li CF; Han F; Liu C; Zhang A; Hsu CC; Peng D; Zhang X; Jin G; Rezaeian AH; Wang G; Zhang W; Pan BS; Wang CY; Wang YH; Wu SY; Yang SC; Hsu FC; D'Agostino RB; Furdui CM; Kucera GL; Parks JS; Chilton FH; Huang CY; Tsai FJ; Pasche B; Watabe K; Lin HK
    Mol Cell; 2020 Oct; 80(2):263-278.e7. PubMed ID: 33022274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer.
    Jin H; Wang S; Zaal EA; Wang C; Wu H; Bosma A; Jochems F; Isima N; Jin G; Lieftink C; Beijersbergen R; Berkers CR; Qin W; Bernards R
    Elife; 2020 Oct; 9():. PubMed ID: 33016874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nivolumab for the Treatment of Advanced Pediatric Malignancies.
    MarjaŃska A; Drogosiewicz M; Dembowska-BagiŃska B; PawiŃska-WĄsikowska K; Balwierz W; Bobeff K; MŁynarski W; Mizia-Malarz A; Raciborska A; Wysocki M; StyczyŃski J
    Anticancer Res; 2020 Dec; 40(12):7095-7100. PubMed ID: 33288608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer-associated adipocytes promote pancreatic cancer progression through SAA1 expression.
    Takehara M; Sato Y; Kimura T; Noda K; Miyamoto H; Fujino Y; Miyoshi J; Nakamura F; Wada H; Bando Y; Ikemoto T; Shimada M; Muguruma N; Takayama T
    Cancer Sci; 2020 Aug; 111(8):2883-2894. PubMed ID: 32535957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Downregulation of ARID1A in gastric cancer cells: a putative protective molecular mechanism against the Harakiri-mediated apoptosis pathway.
    Sakuratani T; Takeuchi T; Yasufuku I; Iwata Y; Saigo C; Kito Y; Yoshida K
    Virchows Arch; 2021 Mar; 478(3):401-411. PubMed ID: 32789692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ref-1 redox activity alters cancer cell metabolism in pancreatic cancer: exploiting this novel finding as a potential target.
    Gampala S; Shah F; Lu X; Moon HR; Babb O; Umesh Ganesh N; Sandusky G; Hulsey E; Armstrong L; Mosely AL; Han B; Ivan M; Yeh JJ; Kelley MR; Zhang C; Fishel ML
    J Exp Clin Cancer Res; 2021 Aug; 40(1):251. PubMed ID: 34376225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholesterol Pathway Inhibition Induces TGF-β Signaling to Promote Basal Differentiation in Pancreatic Cancer.
    Gabitova-Cornell L; Surumbayeva A; Peri S; Franco-Barraza J; Restifo D; Weitz N; Ogier C; Goldman AR; Hartman TR; Francescone R; Tan Y; Nicolas E; Shah N; Handorf EA; Cai KQ; O'Reilly AM; Sloma I; Chiaverelli R; Moffitt RA; Khazak V; Fang CY; Golemis EA; Cukierman E; Astsaturov I
    Cancer Cell; 2020 Oct; 38(4):567-583.e11. PubMed ID: 32976774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pancreatic stellate cells derived exosomal miR-5703 promotes pancreatic cancer by downregulating CMTM4 and activating PI3K/Akt pathway.
    Li M; Guo H; Wang Q; Chen K; Marko K; Tian X; Yang Y
    Cancer Lett; 2020 Oct; 490():20-30. PubMed ID: 32585413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KRAS Controls Pancreatic Cancer Cell Lipid Metabolism and Invasive Potential through the Lipase HSL.
    Rozeveld CN; Johnson KM; Zhang L; Razidlo GL
    Cancer Res; 2020 Nov; 80(22):4932-4945. PubMed ID: 32816911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retraction notice to 'The miR 495-UBE2C-ABCG2/ERCC1 axis reverses cisplatin resistance by downregulating drug resistance genes in cisplatin-resistant non-small cell lung cancer cells' [EBioMedicine 35 (2018) 204-221].
    Guo J; Jin D; Wu Y; Yang L; Du J; Gong K; Chen W; Dai J; Miao S; Xi S
    EBioMedicine; 2021 Jan; 63():103168. PubMed ID: 33487222
    [No Abstract]   [Full Text] [Related]  

  • 19. ACSL4 reprograms fatty acid metabolism in hepatocellular carcinoma via c-Myc/SREBP1 pathway.
    Chen J; Ding C; Chen Y; Hu W; Yu C; Peng C; Feng X; Cheng Q; Wu W; Lu Y; Xie H; Zhou L; Wu J; Zheng S
    Cancer Lett; 2021 Apr; 502():154-165. PubMed ID: 33340617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of LETM1 inhibits the proliferation and stemness of colorectal cancer cells through reactive oxygen species-induced autophagy.
    Che N; Yang Z; Liu X; Li M; Feng Y; Zhang C; Li C; Cui Y; Xuan Y
    J Cell Mol Med; 2021 Feb; 25(4):2110-2120. PubMed ID: 33314691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.