BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

598 related articles for article (PubMed ID: 32345638)

  • 1. Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans.
    Ruben S; Garbe E; Mogavero S; Albrecht-Eckardt D; Hellwig D; Häder A; Krüger T; Gerth K; Jacobsen ID; Elshafee O; Brunke S; Hünniger K; Kniemeyer O; Brakhage AA; Morschhäuser J; Hube B; Vylkova S; Kurzai O; Martin R
    mBio; 2020 Apr; 11(2):. PubMed ID: 32345638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ssn6, an important factor of morphological conversion and virulence in Candida albicans.
    Hwang CS; Oh JH; Huh WK; Yim HS; Kang SO
    Mol Microbiol; 2003 Feb; 47(4):1029-43. PubMed ID: 12581357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans.
    Argimón S; Wishart JA; Leng R; Macaskill S; Mavor A; Alexandris T; Nicholls S; Knight AW; Enjalbert B; Walmsley R; Odds FC; Gow NA; Brown AJ
    Eukaryot Cell; 2007 Apr; 6(4):682-92. PubMed ID: 17277173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TUP1, CPH1 and EFG1 make independent contributions to filamentation in candida albicans.
    Braun BR; Johnson AD
    Genetics; 2000 May; 155(1):57-67. PubMed ID: 10790384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The general transcriptional repressor Tup1 governs filamentous development in Candida tropicalis.
    Gong J; Huang Q; Liang W; Wei Y; Huang G
    Acta Biochim Biophys Sin (Shanghai); 2019 May; 51(5):463-470. PubMed ID: 30968937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apoptotic Factors, CaNma111 and CaYbh3, Function in Candida albicans Filamentation by Regulating the Hyphal Suppressors, Nrg1 and Tup1.
    Kim S; Kim SH; Kweon E; Kim J
    J Microbiol; 2023 Apr; 61(4):403-409. PubMed ID: 36972003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction.
    Kebaara BW; Langford ML; Navarathna DH; Dumitru R; Nickerson KW; Atkin AL
    Eukaryot Cell; 2008 Jun; 7(6):980-7. PubMed ID: 18424510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of the pathogenic potential of Candida albicans filamentous cells in an animal model of haematogenously disseminated candidiasis.
    Cleary IA; Reinhard SM; Lazzell AL; Monteagudo C; Thomas DP; Lopez-Ribot JL; Saville SP
    FEMS Yeast Res; 2016 Mar; 16(2):fow011. PubMed ID: 26851404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional Control of Hypoxic Hyphal Growth in the Fungal Pathogen
    Henry M; Burgain A; Tebbji F; Sellam A
    Front Cell Infect Microbiol; 2021; 11():770478. PubMed ID: 35127551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence.
    Banerjee M; Thompson DS; Lazzell A; Carlisle PL; Pierce C; Monteagudo C; López-Ribot JL; Kadosh D
    Mol Biol Cell; 2008 Apr; 19(4):1354-65. PubMed ID: 18216277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of TUP1-regulated genes in Candida albicans.
    Braun BR; Head WS; Wang MX; Johnson AD
    Genetics; 2000 Sep; 156(1):31-44. PubMed ID: 10978273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transcription factor Cas5 suppresses hyphal morphogenesis during yeast-form growth in Candida albicans.
    Kim JM; Moon HY; Lee DW; Kang HA; Kim JY
    J Microbiol; 2021 Oct; 59(10):911-919. PubMed ID: 34491522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans.
    García-Sánchez S; Mavor AL; Russell CL; Argimon S; Dennison P; Enjalbert B; Brown AJ
    Mol Biol Cell; 2005 Jun; 16(6):2913-25. PubMed ID: 15814841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candida albicans hyphal initiation and elongation.
    Lu Y; Su C; Liu H
    Trends Microbiol; 2014 Dec; 22(12):707-14. PubMed ID: 25262420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Dietary Food Components Capric Acid and Caprylic Acid Inhibit Virulence Factors in Candida albicans Through Multitargeting.
    Jadhav A; Mortale S; Halbandge S; Jangid P; Patil R; Gade W; Kharat K; Karuppayil SM
    J Med Food; 2017 Nov; 20(11):1083-1090. PubMed ID: 28922057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans.
    Lane S; Birse C; Zhou S; Matson R; Liu H
    J Biol Chem; 2001 Dec; 276(52):48988-96. PubMed ID: 11595734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1.
    Sharkey LL; McNemar MD; Saporito-Irwin SM; Sypherd PS; Fonzi WA
    J Bacteriol; 1999 Sep; 181(17):5273-9. PubMed ID: 10464197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Candida albicans Sfl1 suppresses flocculation and filamentation.
    Bauer J; Wendland J
    Eukaryot Cell; 2007 Oct; 6(10):1736-44. PubMed ID: 17766464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonistic interplay of Swi1 and Tup1 on filamentous growth of Candida albicans.
    Mao X; Li Y; Wang H; Cao F; Chen J
    FEMS Microbiol Lett; 2008 Aug; 285(2):233-41. PubMed ID: 18564337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans.
    Zeidler U; Lettner T; Lassnig C; Müller M; Lajko R; Hintner H; Breitenbach M; Bito A
    FEMS Yeast Res; 2009 Feb; 9(1):126-42. PubMed ID: 19054126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.