BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 32345720)

  • 1.
    Kim K; Lane EA; Saftien A; Wang H; Xu Y; Wirtz-Peitz F; Perrimon N
    Proc Natl Acad Sci U S A; 2020 May; 117(19):10357-10367. PubMed ID: 32345720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystic fibrosis mouse model-dependent intestinal structure and gut microbiome.
    Bazett M; Honeyman L; Stefanov AN; Pope CE; Hoffman LR; Haston CK
    Mamm Genome; 2015 Jun; 26(5-6):222-34. PubMed ID: 25721416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defective CFTR promotes intestinal proliferation via inhibition of the hedgehog pathway during cystic fibrosis.
    Liu K; Wang X; Zou C; Zhang J; Chen H; Tsang L; Yu MK; Chung YW; Wang J; Dai Y; Liu Y; Zhang X
    Cancer Lett; 2019 Apr; 446():15-24. PubMed ID: 30639531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cystic Fibrosis, CFTR, and Colorectal Cancer.
    Scott P; Anderson K; Singhania M; Cormier R
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proteome speciation of an immortalized cystic fibrosis cell line: New perspectives on the pathophysiology of the disease.
    Puglia M; Landi C; Gagliardi A; Breslin L; Armini A; Brunetti J; Pini A; Bianchi L; Bini L
    J Proteomics; 2018 Jan; 170():28-42. PubMed ID: 28970102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CFTR, mucins, and mucus obstruction in cystic fibrosis.
    Kreda SM; Davis CW; Rose MC
    Cold Spring Harb Perspect Med; 2012 Sep; 2(9):a009589. PubMed ID: 22951447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron Homeostasis and Inflammatory Status in Mice Deficient for the Cystic Fibrosis Transmembrane Regulator.
    Deschemin JC; Allouche S; Brouillard F; Vaulont S
    PLoS One; 2015; 10(12):e0145685. PubMed ID: 26709821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genotype and phenotype in cystic fibrosis.
    Zielenski J
    Respiration; 2000; 67(2):117-33. PubMed ID: 10773783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models.
    Wang Y; Wrennall JA; Cai Z; Li H; Sheppard DN
    Int J Biochem Cell Biol; 2014 Jul; 52():47-57. PubMed ID: 24727426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetics of Cystic Fibrosis: Clinical Implications.
    Egan ME
    Clin Chest Med; 2016 Mar; 37(1):9-16. PubMed ID: 26857764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of the proinflammatory state in cystic fibrosis lung epithelial cells by genes from the TNF-alphaR/NFkappaB pathway.
    Eidelman O; Srivastava M; Zhang J; Leighton X; Murtie J; Jozwik C; Jacobson K; Weinstein DL; Metcalf EL; Pollard HB
    Mol Med; 2001 Aug; 7(8):523-34. PubMed ID: 11591888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inflammatory Activity of Epithelial Stem Cell Variants from Cystic Fibrosis Lungs Is Not Resolved by CFTR Modulators.
    Wang S; Niroula S; Hoffman A; Khorrami M; Khorrami M; Yuan F; Gasser GN; Choi S; Liu B; Li J; Metersky ML; Vincent M; Crum CP; Boucher RC; Karmouty-Quintana H; Huang HJ; Sheshadri A; Dickey BF; Parekh KR; Engelhardt JF; McKeon FD; Xian W
    Am J Respir Crit Care Med; 2023 Nov; 208(9):930-943. PubMed ID: 37695863
    [No Abstract]   [Full Text] [Related]  

  • 13. Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis.
    Klymiuk N; Mundhenk L; Kraehe K; Wuensch A; Plog S; Emrich D; Langenmayer MC; Stehr M; Holzinger A; Kröner C; Richter A; Kessler B; Kurome M; Eddicks M; Nagashima H; Heinritzi K; Gruber AD; Wolf E
    J Mol Med (Berl); 2012 May; 90(5):597-608. PubMed ID: 22170306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical implications of cystic fibrosis transmembrane conductance regulator mutations.
    Mickle JE; Cutting GR
    Clin Chest Med; 1998 Sep; 19(3):443-58, v. PubMed ID: 9759548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cystic fibrosis transmembrane conductance regulator is expressed in mucin granules from Calu-3 and primary human airway epithelial cells.
    LeSimple P; Goepp J; Palmer ML; Fahrenkrug SC; O'Grady SM; Ferraro P; Robert R; Hanrahan JW
    Am J Respir Cell Mol Biol; 2013 Oct; 49(4):511-6. PubMed ID: 23742042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CFTR dysfunction in cystic fibrosis and chronic obstructive pulmonary disease.
    Fernandez Fernandez E; De Santi C; De Rose V; Greene CM
    Expert Rev Respir Med; 2018 Jun; 12(6):483-492. PubMed ID: 29750581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene.
    Fan Z; Perisse IV; Cotton CU; Regouski M; Meng Q; Domb C; Van Wettere AJ; Wang Z; Harris A; White KL; Polejaeva IA
    JCI Insight; 2018 Oct; 3(19):. PubMed ID: 30282831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vector-specific complementation profiles of two independent primary defects in cystic fibrosis airways.
    Zhang Y; Jiang Q; Dudus L; Yankaskas JR; Engelhardt JF
    Hum Gene Ther; 1998 Mar; 9(5):635-48. PubMed ID: 9551612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Animal and model systems for studying cystic fibrosis.
    Rosen BH; Chanson M; Gawenis LR; Liu J; Sofoluwe A; Zoso A; Engelhardt JF
    J Cyst Fibros; 2018 Mar; 17(2S):S28-S34. PubMed ID: 28939349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis.
    Sun X; Sui H; Fisher JT; Yan Z; Liu X; Cho HJ; Joo NS; Zhang Y; Zhou W; Yi Y; Kinyon JM; Lei-Butters DC; Griffin MA; Naumann P; Luo M; Ascher J; Wang K; Frana T; Wine JJ; Meyerholz DK; Engelhardt JF
    J Clin Invest; 2010 Sep; 120(9):3149-60. PubMed ID: 20739752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.