BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32345978)

  • 1. A HaloTag-TEV genetic cassette for mechanical phenotyping of proteins from tissues.
    Rivas-Pardo JA; Li Y; Mártonfalvi Z; Tapia-Rojo R; Unger A; Fernández-Trasancos Á; Herrero-Galán E; Velázquez-Carreras D; Fernández JM; Linke WA; Alegre-Cebollada J
    Nat Commun; 2020 Apr; 11(1):2060. PubMed ID: 32345978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Mechanical Power of Titin Folding.
    Eckels EC; Haldar S; Tapia-Rojo R; Rivas-Pardo JA; Fernández JM
    Cell Rep; 2019 May; 27(6):1836-1847.e4. PubMed ID: 31067467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force generation by titin folding.
    Mártonfalvi Z; Bianco P; Naftz K; Ferenczy GG; Kellermayer M
    Protein Sci; 2017 Jul; 26(7):1380-1390. PubMed ID: 28097712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical fatigue in repetitively stretched single molecules of titin.
    Kellermayer MS; Smith SB; Bustamante C; Granzier HL
    Biophys J; 2001 Feb; 80(2):852-63. PubMed ID: 11159452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical responses of the mechanosensitive unstructured domains in cardiac titin.
    Pang SM; Le S; Yan J
    Biol Cell; 2018 Mar; 110(3):65-76. PubMed ID: 29226977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Work Done by Titin Protein Folding Assists Muscle Contraction.
    Rivas-Pardo JA; Eckels EC; Popa I; Kosuri P; Linke WA; Fernández JM
    Cell Rep; 2016 Feb; 14(6):1339-1347. PubMed ID: 26854230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deleting titin's I-band/A-band junction reveals critical roles for titin in biomechanical sensing and cardiac function.
    Granzier HL; Hutchinson KR; Tonino P; Methawasin M; Li FW; Slater RE; Bull MM; Saripalli C; Pappas CT; Gregorio CC; Smith JE
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14589-94. PubMed ID: 25246556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disulfide isomerization reactions in titin immunoglobulin domains enable a mode of protein elasticity.
    Giganti D; Yan K; Badilla CL; Fernandez JM; Alegre-Cebollada J
    Nat Commun; 2018 Jan; 9(1):185. PubMed ID: 29330363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Work of Titin Protein Folding as a Major Driver in Muscle Contraction.
    Eckels EC; Tapia-Rojo R; Rivas-Pardo JA; Fernández JM
    Annu Rev Physiol; 2018 Feb; 80():327-351. PubMed ID: 29433413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidomain proteins under force.
    Valle-Orero J; Rivas-Pardo JA; Popa I
    Nanotechnology; 2017 Apr; 28(17):174003. PubMed ID: 28272024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titin-based tension in the cardiac sarcomere: molecular origin and physiological adaptations.
    Anderson BR; Granzier HL
    Prog Biophys Mol Biol; 2012; 110(2-3):204-17. PubMed ID: 22910434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces.
    Chen H; Yuan G; Winardhi RS; Yao M; Popa I; Fernandez JM; Yan J
    J Am Chem Soc; 2015 Mar; 137(10):3540-6. PubMed ID: 25726700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylating Titin's Cardiac N2B Element by ERK2 or CaMKIIδ Lowers the Single Molecule and Cardiac Muscle Force.
    Perkin J; Slater R; Del Favero G; Lanzicher T; Hidalgo C; Anderson B; Smith JE; Sbaizero O; Labeit S; Granzier H
    Biophys J; 2015 Dec; 109(12):2592-2601. PubMed ID: 26682816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction.
    Heidlauf T; Klotz T; Rode C; Altan E; Bleiler C; Siebert T; Röhrle O
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1423-1437. PubMed ID: 26935301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanically driven contour-length adjustment in rat cardiac titin's unique N2B sequence: titin is an adjustable spring.
    Helmes M; Trombitás K; Centner T; Kellermayer M; Labeit S; Linke WA; Granzier H
    Circ Res; 1999 Jun; 84(11):1339-52. PubMed ID: 10364572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elasticity of the Transition State Leading to an Unexpected Mechanical Stabilization of Titin Immunoglobulin Domains.
    Yuan G; Le S; Yao M; Qian H; Zhou X; Yan J; Chen H
    Angew Chem Int Ed Engl; 2017 May; 56(20):5490-5493. PubMed ID: 28394039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium.
    DuVall MM; Gifford JL; Amrein M; Herzog W
    Eur Biophys J; 2013 Apr; 42(4):301-7. PubMed ID: 23224300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of immunoglobulin-like domains from titin's spring segment alters titin splicing in mouse skeletal muscle and causes myopathy.
    Buck D; Smith JE; Chung CS; Ono Y; Sorimachi H; Labeit S; Granzier HL
    J Gen Physiol; 2014 Feb; 143(2):215-30. PubMed ID: 24470489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical manipulation of single titin molecules with laser tweezers.
    Kellermayer MS; Smith S; Bustamante C; Granzier HL
    Adv Exp Med Biol; 2000; 481():111-26; discussion 127-8. PubMed ID: 10987069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Titin N2A Domain and Its Interactions at the Sarcomere.
    Adewale AO; Ahn YH
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.