These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32346625)

  • 1. Norm-dist Monte-Carlo integrative method for the improvement of fuzzy analytic hierarchy process.
    Wicaksono FD; Arshad YB; Sihombing H
    Heliyon; 2020 Apr; 6(4):e03607. PubMed ID: 32346625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Integrated MCDM Model for Conveyor Equipment Evaluation and Selection in an FMC Based on a Fuzzy AHP and Fuzzy ARAS in the Presence of Vagueness.
    Nguyen HT; Dawal SZ; Nukman Y; Rifai AP; Aoyama H
    PLoS One; 2016; 11(4):e0153222. PubMed ID: 27070543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive Eutrophication Assessment Based on Fuzzy Matter Element Model and Monte Carlo-Triangular Fuzzy Numbers Approach.
    Wang Y; Ran W
    Int J Environ Res Public Health; 2019 May; 16(10):. PubMed ID: 31109129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimodal fuzzy analytic hierarchy process (BFAHP) for coronary heart disease risk assessment.
    Sabahi F
    J Biomed Inform; 2018 Jul; 83():204-216. PubMed ID: 29625186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel fuzzy framework for technology selection of sustainable wastewater treatment plants based on TODIM methodology in developing urban areas.
    Eseoglu G; Yapsakli K; Tozan H; Vayvay O
    Sci Rep; 2022 May; 12(1):8800. PubMed ID: 35614159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An experimental comparison of fuzzy logic and analytic hierarchy process for medical decision support systems.
    Uzoka FM; Obot O; Barker K; Osuji J
    Comput Methods Programs Biomed; 2011 Jul; 103(1):10-27. PubMed ID: 20633949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection.
    Hanine M; Boutkhoum O; Tikniouine A; Agouti T
    Springerplus; 2016; 5():501. PubMed ID: 27186465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybridized fuzzy analytic hierarchy process and fuzzy weighted average for identifying optimal design concept.
    Olabanji OM; Mpofu K
    Heliyon; 2020 Jan; 6(1):e03182. PubMed ID: 32021922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a fuzzy comprehensive evaluation method to determine product usability: A test case.
    Zhou R; Chan AH
    Work; 2017; 56(1):21-29. PubMed ID: 28035942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water quality analysis in rivers with non-parametric probability distributions and fuzzy inference systems: application to the Cauca River, Colombia.
    Ocampo-Duque W; Osorio C; Piamba C; Schuhmacher M; Domingo JL
    Environ Int; 2013 Feb; 52():17-28. PubMed ID: 23266912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fuzzy analytic network process for multi-criteria evaluation of contaminated site remedial countermeasures.
    Promentilla MA; Furuichi T; Ishii K; Tanikawa N
    J Environ Manage; 2008 Aug; 88(3):479-95. PubMed ID: 17467879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of improved fuzzy best worst analytic hierarchy process on renewable energy.
    Majumder P; Balas VE; Paul A; Baidya D
    PeerJ Comput Sci; 2021; 7():e453. PubMed ID: 33954237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method.
    Taherkhani N; Sepehri MM; Shafaghi S; Khatibi T
    BMC Med Inform Decis Mak; 2019 Sep; 19(1):182. PubMed ID: 31492132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical semi-numeric method for pairwise fuzzy group decision making.
    Marimin M; Umano M; Hatono I; Tamura H
    IEEE Trans Syst Man Cybern B Cybern; 2002; 32(5):691-700. PubMed ID: 18244875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation.
    Nguyen HT; Md Dawal SZ; Nukman Y; Aoyama H; Case K
    PLoS One; 2015; 10(9):e0133599. PubMed ID: 26368541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Monte Carlo and fuzzy math simulation methods for quantitative microbial risk assessment.
    Davidson VJ; Ryks J
    J Food Prot; 2003 Oct; 66(10):1900-10. PubMed ID: 14572230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuzzy analytic hierarchy process-based risk priority number for risk assessments of commissioning process of a ring gantry LINAC.
    Chang J; Jang S; Lalonde R; Huq SM
    J Appl Clin Med Phys; 2022 Nov; 23(11):e13760. PubMed ID: 35998202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different methodologies to quantify uncertainties of air emissions.
    Romano D; Bernetti A; De Lauretis R
    Environ Int; 2004 Oct; 30(8):1099-107. PubMed ID: 15337355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a fuzzy-stochastic nonlinear model to incorporate aleatoric and epistemic uncertainty.
    Li H; Zhang K
    J Contam Hydrol; 2010 Jan; 111(1-4):1-12. PubMed ID: 19945767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-stage fuzzy decision-making framework to evaluate the appropriate wastewater treatment system: a case study.
    Büyüközkan G; Tüfekçi G
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):53507-53519. PubMed ID: 34031840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.