These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32346808)

  • 1. Force-dependent recruitment from myosin OFF-state increases end-systolic pressure-volume relationship in left ventricle.
    Mann CK; Lee LC; Campbell KS; Wenk JF
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2683-2692. PubMed ID: 32346808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force-Dependent Recruitment from the Myosin Off State Contributes to Length-Dependent Activation.
    Campbell KS; Janssen PML; Campbell SG
    Biophys J; 2018 Aug; 115(3):543-553. PubMed ID: 30054031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of ventricular volume reduction surgery in the dilated, poorly contractile left ventricle: a simple finite element analysis.
    Ratcliffe MB; Hong J; Salahieh A; Ruch S; Wallace AW
    J Thorac Cardiovasc Surg; 1998 Oct; 116(4):566-77. PubMed ID: 9766584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residual stress produced by ventricular volume reduction surgery has little effect on ventricular function and mechanics: a finite element model study.
    Guccione JM; Moonly SM; Wallace AW; Ratcliffe MB
    J Thorac Cardiovasc Surg; 2001 Sep; 122(3):592-9. PubMed ID: 11547315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myosin filament activation in the heart is tuned to the mechanical task.
    Reconditi M; Caremani M; Pinzauti F; Powers JD; Narayanan T; Stienen GJ; Linari M; Lombardi V; Piazzesi G
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3240-3245. PubMed ID: 28265101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite state machine implementation for left ventricle modeling and control.
    King JM; Bergeron CA; Taylor CE
    Biomed Eng Online; 2019 Jan; 18(1):10. PubMed ID: 30700298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypovolemic shock and cardiac contractility: assessment by end-systolic pressure-volume relations.
    Welte M; Zwissler B; Frey L; Goresch T; Kleen M; Holzer K; Messmer K
    Res Exp Med (Berl); 1996; 196(2):87-104. PubMed ID: 8739799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanics of active contraction in cardiac muscle: Part II--Cylindrical models of the systolic left ventricle.
    Guccione JM; Waldman LK; McCulloch AD
    J Biomech Eng; 1993 Feb; 115(1):82-90. PubMed ID: 8445902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of the entire end-systolic pressure-volume and ejection fraction-afterload relations: a new concept of systolic myocardial stiffness.
    Mirsky I; Tajimi T; Peterson KL
    Circulation; 1987 Aug; 76(2):343-56. PubMed ID: 3608122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite element model of myocardial infarction using a composite material approach.
    Haddad SMH; Samani A
    Comput Methods Biomech Biomed Engin; 2018 Jan; 21(1):33-46. PubMed ID: 29252005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. End-systolic pressure-volume relationship and intracellular control of contraction.
    Landesberg A
    Am J Physiol; 1996 Jan; 270(1 Pt 2):H338-49. PubMed ID: 8769770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element model of the human left ventricular systole.
    Dorri F; Niederer PF; Lunkenheimer PP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):319-41. PubMed ID: 17132618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of myosin isozyme shift on curvilinearity of the left ventricular end-systolic pressure-volume relation of In situ rat hearts.
    Lee S; Ohga Y; Tachibana H; Syuu Y; Ito H; Harada M; Suga H; Takaki M
    Jpn J Physiol; 1998 Dec; 48(6):445-55. PubMed ID: 10021498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimensional reductions of a cardiac model for effective validation and calibration.
    Caruel M; Chabiniok R; Moireau P; Lecarpentier Y; Chapelle D
    Biomech Model Mechanobiol; 2014 Aug; 13(4):897-914. PubMed ID: 24317551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of left ventricle based on pressure-volume relation.
    Shoucri RM
    J Biomed Eng; 1990 Nov; 12(6):482-8. PubMed ID: 2266744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replication of the Frank-Starling response in a mock circulation loop.
    Gregory SD; Stevens M; Timms D; Pearcy M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6825-8. PubMed ID: 22255906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional strain analysis of the human left ventricle.
    Bogaert J
    J Belge Radiol; 1997 Oct; 80(5):257-8. PubMed ID: 9400061
    [No Abstract]   [Full Text] [Related]  

  • 19. Nonlinearity and load sensitivity of end-systolic pressure-volume relation of canine left ventricle in vivo.
    van der Velde ET; Burkhoff D; Steendijk P; Karsdon J; Sagawa K; Baan J
    Circulation; 1991 Jan; 83(1):315-27. PubMed ID: 1670628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organ-level validation of a cross-bridge cycling descriptor in a left ventricular finite element model: effects of ventricular loading on myocardial strains.
    Shavik SM; Wall ST; Sundnes J; Burkhoff D; Lee LC
    Physiol Rep; 2017 Nov; 5(21):. PubMed ID: 29122952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.