These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32346921)

  • 21. ZnO Quantum Dots Coupled with Graphene toward Electrocatalytic N
    Liu YP; Li YB; Huang DJ; Zhang H; Chu K
    Chemistry; 2019 Sep; 25(51):11933-11939. PubMed ID: 31310395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water.
    Ma W; Ma R; Wang C; Liang J; Liu X; Zhou K; Sasaki T
    ACS Nano; 2015 Feb; 9(2):1977-84. PubMed ID: 25605063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability.
    Chubar N; Gilmour R; Gerda V; Mičušík M; Omastova M; Heister K; Man P; Fraissard J; Zaitsev V
    Adv Colloid Interface Sci; 2017 Jul; 245():62-80. PubMed ID: 28477867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MOF-Derived Cu
    Li J; Lu X; Huang J; Guo K; Xu C
    Chem Commun (Camb); 2022 Feb; 58(16):2678-2681. PubMed ID: 35107455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning Surface Electronic Configuration of NiFe LDHs Nanosheets by Introducing Cation Vacancies (Fe or Ni) as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction.
    Wang Y; Qiao M; Li Y; Wang S
    Small; 2018 Apr; 14(17):e1800136. PubMed ID: 29611304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.
    Gong M; Li Y; Wang H; Liang Y; Wu JZ; Zhou J; Wang J; Regier T; Wei F; Dai H
    J Am Chem Soc; 2013 Jun; 135(23):8452-5. PubMed ID: 23701670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen Evolution Catalysis with Mössbauerite-A Trivalent Iron-Only Layered Double Hydroxide.
    Ertl M; Andronescu C; Moir J; Zobel M; Wagner FE; Barwe S; Ozin G; Schuhmann W; Breu J
    Chemistry; 2018 Jun; 24(36):9004-9008. PubMed ID: 29676820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and Characterization of Layered Double Hydroxides as Materials for Electrocatalytic Applications.
    Tonelli D; Gualandi I; Musella E; Scavetta E
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33805722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of Pt nanoparticles on nitrogen-doped carbon/Ni nanofibers for improved hydrogen evolution activity.
    Li M; Zhu Y; Song N; Wang C; Lu X
    J Colloid Interface Sci; 2018 Mar; 514():199-207. PubMed ID: 29257974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergy between copper and iron sites inside carbon nanofibers for superior electrocatalytic denitrification.
    Lan Y; Luo H; Ma Y; Hua Y; Liao T; Yang J
    Nanoscale; 2021 Jun; 13(22):10108-10115. PubMed ID: 34060572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Supported Porous Ni-Fe-W Hydroxide Nanosheets on Carbon Fiber: A Highly Efficient Electrode for Oxygen Evolution Reaction.
    Xu J; Wang M; Yang F; Ju X; Jia X
    Inorg Chem; 2019 Oct; 58(19):13037-13048. PubMed ID: 31507157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient Electrocatalytic Nitrogen Fixation on FeMoO
    Chu K; Li QQ; Cheng YH; Liu YP
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11789-11796. PubMed ID: 32091874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphorus modulation of a mesoporous rhodium film for enhanced nitrogen electroreduction.
    Wang Z; Tian W; Yu H; Zhou T; Wang P; Xu Y; Li X; Wang L; Wang H
    Nanoscale; 2021 Aug; 13(32):13809-13815. PubMed ID: 34477655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cobalt-Nickel Layered Double Hydroxides Modified on TiO
    Chen W; Wang T; Xue J; Li S; Wang Z; Sun S
    Small; 2017 Mar; 13(10):. PubMed ID: 28026124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of phosphate recovery from urine by layered double hydroxides.
    Dox K; Everaert M; Merckx R; Smolders E
    Sci Total Environ; 2019 Sep; 682():437-446. PubMed ID: 31128363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accelerating charge transfer at an ultrafine NiFe-LDHs/CB interface during the electrocatalyst activation process for water oxidation.
    Cai M; Liu Q; Zhao Y; Wang Z; Li Y; Li G
    Dalton Trans; 2020 Jun; 49(22):7436-7443. PubMed ID: 32432241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption behavior and mechanism of Mg/Fe layered double hydroxide with Fe
    Xie Y; Yuan X; Wu Z; Zeng G; Jiang L; Peng X; Li H
    J Colloid Interface Sci; 2019 Feb; 536():440-455. PubMed ID: 30384050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cobalt layered double hydroxides derived CoP/Co
    Chen L; Zhang Y; Wang H; Wang Y; Li D; Duan C
    Nanoscale; 2018 Dec; 10(45):21019-21024. PubMed ID: 30427041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antimonate uptake by calcined and uncalcined layered double hydroxides: effect of cationic composition and M
    Dore E; Frau F
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):916-929. PubMed ID: 29076021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.