BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32347505)

  • 1. The use of Callitriche cophocarpa Sendtn. for the reclamation of Cr-contaminated freshwater habitat: benefits and limitations.
    Augustynowicz J; Sitek E; Bryniarski T; Baran A; Ostachowicz B; Urbańska-Stopa M; Szklarczyk M
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):25510-25522. PubMed ID: 32347505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromium(VI) bioremediation by aquatic macrophyte Callitriche cophocarpa Sendtn.
    Augustynowicz J; Grosicki M; Hanus-Fajerska E; Lekka M; Waloszek A; Kołoczek H
    Chemosphere; 2010 May; 79(11):1077-83. PubMed ID: 20385400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do chromium-resistant bacterial symbionts of hyperaccumulator Callitriche cophocarpa support their host in phytobial remediation of water?
    Augustynowicz J; Kowalczyk A; Latowski D; Kołton A; Sitek E; Kostecka-Gugała A
    Sci Total Environ; 2024 Apr; 922():171327. PubMed ID: 38428606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium distribution in shoots of macrophyte Callitriche cophocarpa Sendtn.
    Augustynowicz J; Wróbel P; Płachno BJ; Tylko G; Gajewski Z; Węgrzynek D
    Planta; 2014 Jun; 239(6):1233-42. PubMed ID: 24595517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metals in Callitriche cophocarpa from small rivers with various levels of pollution in SW Poland.
    Maksymowicz P; Samecka-Cymerman A; Rajsz A; Wojtuń B; Rudecki A; Lenarcik M; Kempers AJ
    Environ Sci Pollut Res Int; 2023 Sep; 30(43):97888-97899. PubMed ID: 37599347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Callitriche cophocarpa (water starwort) proteome under chromate stress: evidence for induction of a quinone reductase.
    Kaszycki P; Dubicka-Lisowska A; Augustynowicz J; Piwowarczyk B; Wesołowski W
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8928-8942. PubMed ID: 29332274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Callitriche cophocarpa biomass as a potential low-cost biosorbent for trivalent chromium.
    Kyzioł-Komosińska J; Augustynowicz J; Lasek W; Czupioł J; Ociński D
    J Environ Manage; 2018 May; 214():295-304. PubMed ID: 29533827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on chromium-binding capacity of Callitriche cophocarpa in an aquatic environment.
    Augustynowicz J; Kyzioł-Komosińska J; Smoleń S; Waloszek A
    Arch Environ Contam Toxicol; 2013 Apr; 64(3):410-8. PubMed ID: 23247557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation patterns of Cr in Callitriche organs--qualitative and quantitative analysis.
    Augustynowicz J; Gajewski Z; Kostecka-Gugała A; Wróbel P; Kołton A
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2669-76. PubMed ID: 26438365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential phytoremediation system using macrophyte
    Martino LJ; Fernández San Juan MR; Angelo C
    Environ Technol; 2023 Aug; 44(18):2770-2780. PubMed ID: 35184699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of water polluted by thallium, cadmium, zinc, and lead with the use of macrophyte Callitriche cophocarpa.
    Augustynowicz J; Tokarz K; Baran A; Płachno BJ
    Arch Environ Contam Toxicol; 2014 May; 66(4):572-81. PubMed ID: 24477868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil.
    Khan AG
    Environ Int; 2001 May; 26(5-6):417-23. PubMed ID: 11392761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of plants on the removal of hexavalent chromium in wetland sediments.
    Xu S; Jaffé PR
    J Environ Qual; 2006; 35(1):334-41. PubMed ID: 16397109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of drying and grinding samples for determining mobile chromium fractions in polluted river sediments.
    Trojanowska M; Świetlik R
    Environ Monit Assess; 2019 Aug; 191(9):578. PubMed ID: 31432272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobility of chromium in sediments dominated by macrophytes and cyanobacteria in different zones of Lake Taihu.
    Fan X; Ding S; Chen M; Gao S; Fu Z; Gong M; Wang Y; Zhang C
    Sci Total Environ; 2019 May; 666():994-1002. PubMed ID: 30970505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromium bioavailability in aquatic systems impacted by tannery wastewaters. Part 1: Understanding chromium accumulation by indigenous chironomids.
    Vignati DAL; Ferrari BJD; Roulier JL; Coquery M; Szalinska E; Bobrowski A; Czaplicka A; Kownacki A; Dominik J
    Sci Total Environ; 2019 Feb; 653():401-408. PubMed ID: 30412885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Speciation and Risk Assessment of Heavy Metals in Surface Sediments from the Heavily Polluted Area of Xiaoqing River].
    Huang Y; Li YX; Gao FW; Xu MM; Sun B; Wang N; Yang J
    Huan Jing Ke Xue; 2015 Jun; 36(6):2046-53. PubMed ID: 26387306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement and bioaccumulation of chromium in an artificial freshwater ecosystem.
    Ramoliya J; Kamdar A; Kundu R
    Indian J Exp Biol; 2007 May; 45(5):475-9. PubMed ID: 17569292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sediment characteristics on the toxicity of chromium(III) and chromium(VI) to the amphipod, Hyalella azteca.
    Besser JM; Brumbaugh WG; Kemble NE; May TW; Ingersoll CG
    Environ Sci Technol; 2004 Dec; 38(23):6210-6. PubMed ID: 15597873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments.
    Cicero-Fernández D; Peña-Fernández M; Expósito-Camargo JA; Antizar-Ladislao B
    Int J Phytoremediation; 2016; 18(6):575-82. PubMed ID: 26375048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.