BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32347505)

  • 21. The behavior of heavy metals in tidal flat sediments during fresh water leaching.
    Li Q; Liu Y; Du Y; Cui Z; Shi L; Wang L; Li H
    Chemosphere; 2011 Feb; 82(6):834-8. PubMed ID: 21131022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of chromium contamination in water, sediment and vegetation caused by the tannery of Jijel (Algeria): a case study.
    Leghouchi E; Laib E; Guerbet M
    Environ Monit Assess; 2009 Jun; 153(1-4):111-7. PubMed ID: 18512125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of plants on the reduction of hexavalent chromium in wetland sediments.
    Zazo JA; Paull JS; Jaffe PR
    Environ Pollut; 2008 Nov; 156(1):29-35. PubMed ID: 18299165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accumulation and elimination of chromium by freshwater species exposed to spiked sediments.
    Marchese M; Gagneten AM; Parma MJ; Pavé PJ
    Arch Environ Contam Toxicol; 2008 Nov; 55(4):603-9. PubMed ID: 18274820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of potential bioavailability of heavy metals in the sediments of land-freshwater interfaces by diffusive gradients in thin films.
    Song Z; Dong L; Shan B; Tang W
    Chemosphere; 2018 Jan; 191():218-225. PubMed ID: 29035793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Acid volatile sulfide and bioaccumulation of Cr in sediments from a municipal polluted river].
    Li F; Wen YM; Zhu PT; Jin H; Song WW; Dai RZ
    Huan Jing Ke Xue; 2009 Mar; 30(3):875-81. PubMed ID: 19432344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromium speciation in river sediment pore water contaminated by tannery effluent.
    Burbridge DJ; Koch I; Zhang J; Reimer KJ
    Chemosphere; 2012 Oct; 89(7):838-43. PubMed ID: 22658944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heavy metals in three lakes in West Poland.
    Szymanowska A; Samecka-Cymerman A; Kempers AJ
    Ecotoxicol Environ Saf; 1999 May; 43(1):21-9. PubMed ID: 10330316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development and validation of HPLC-ICP-MS method for the determination inorganic Cr, As and Sb speciation forms and its application for Pławniowice reservoir (Poland) water and bottom sediments variability study.
    Jabłońska-Czapla M; Szopa S; Grygoyć K; Łyko A; Michalski R
    Talanta; 2014 Mar; 120():475-83. PubMed ID: 24468399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromium (Cr) accumulation in the freshwater crab, Zilchiopsis collastinensis.
    Gagneten AM; Imhof A
    J Environ Biol; 2009 May; 30(3):345-8. PubMed ID: 20120456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toxicological effects of short-term resuspension of metal-contaminated freshwater and marine sediments.
    Fetters KJ; Costello DM; Hammerschmidt CR; Burton GA
    Environ Toxicol Chem; 2016 Mar; 35(3):676-86. PubMed ID: 26313755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.
    Zhang XH; Liu J; Huang HT; Chen J; Zhu YN; Wang DQ
    Chemosphere; 2007 Apr; 67(6):1138-43. PubMed ID: 17207838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Geochemical stability of chromium in sediments from the lower Hackensack River, New Jersey.
    Magar VS; Martello L; Southworth B; Fuchsman P; Sorensen M; Wenning RJ
    Sci Total Environ; 2008 May; 394(1):103-11. PubMed ID: 18295301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper.
    Monferrán MV; Pignata ML; Wunderlin DA
    Environ Pollut; 2012 Feb; 161():15-22. PubMed ID: 22230062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromium occurrence and speciation in Baltimore harbor sediments and porewater, Baltimore, Maryland, USA.
    Graham AM; Wadhawan AR; Bouwer EJ
    Environ Toxicol Chem; 2009 Mar; 28(3):471-80. PubMed ID: 18937532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cr in dredged marine sediments: Anthropogenic enrichment, bioavailability and potential adverse effects.
    Baraud F; Leleyter L; Lemoine M; Hamdoun H
    Mar Pollut Bull; 2017 Jul; 120(1-2):303-308. PubMed ID: 28532904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Geochemistry of Cd, Cr, and Zn in highly contaminated sediments and its influences on assimilation by marine bivalves.
    Fan W; Wang WX; Chen J
    Environ Sci Technol; 2002 Dec; 36(23):5164-71. PubMed ID: 12523434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioavailability and toxicity of metals from a contaminated sediment by acid mine drainage: linking exposure-response relationships of the freshwater bivalve Corbicula fluminea to contaminated sediment.
    Sarmiento AM; Bonnail E; Nieto JM; DelValls Á
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22957-22967. PubMed ID: 27578093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water and sediment quality assessment in the Colastiné-Corralito stream system (Santa Fe, Argentina): impact of industry and agriculture on aquatic ecosystems.
    Regaldo L; Gutierrez MF; Reno U; Fernández V; Gervasio S; Repetti MR; Gagneten AM
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6951-6968. PubMed ID: 29273985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Response of leaf and fine roots proteomes of Salix viminalis L. to growth on Cr-rich tannery waste.
    Zemleduch-Barylska A; Lorenc-Plucińska G
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18394-406. PubMed ID: 27282371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.