These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32347701)

  • 1. Switchable Wettability for Condensation Heat Transfer.
    Ludwicki JM; Robinson FL; Steen PH
    ACS Appl Mater Interfaces; 2020 May; 12(19):22115-22119. PubMed ID: 32347701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recurrent filmwise and dropwise condensation on a beetle mimetic surface.
    Hou Y; Yu M; Chen X; Wang Z; Yao S
    ACS Nano; 2015 Jan; 9(1):71-81. PubMed ID: 25482594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dropwise Condensation on Multiscale Bioinspired Metallic Surfaces with Nanofeatures.
    Orejon D; Askounis A; Takata Y; Attinger D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24735-24750. PubMed ID: 31180632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dropwise condensation on solid hydrophilic surfaces.
    Cha H; Vahabi H; Wu A; Chavan S; Kim MK; Sett S; Bosch SA; Wang W; Kota AK; Miljkovic N
    Sci Adv; 2020 Jan; 6(2):eaax0746. PubMed ID: 31950076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable graphene coatings for enhanced condensation heat transfer.
    Preston DJ; Mafra DL; Miljkovic N; Kong J; Wang EN
    Nano Lett; 2015 May; 15(5):2902-9. PubMed ID: 25826223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferred Mode of Atmospheric Water Vapor Condensation on Nanoengineered Surfaces: Dropwise or Filmwise?
    Thomas TM; Sinha Mahapatra P; Ganguly R; Tiwari MK
    Langmuir; 2023 Apr; 39(15):5396-5407. PubMed ID: 37014297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.
    Preston DJ; Wilke KL; Lu Z; Cruz SS; Zhao Y; Becerra LL; Wang EN
    Langmuir; 2018 Apr; 34(15):4658-4664. PubMed ID: 29578348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-shedding and sweeping of condensate on composite nano-surface under external force field: enhancement mechanism for dropwise and filmwise condensation modes.
    Sun J; Wang HS
    Sci Rep; 2017 Aug; 7(1):8633. PubMed ID: 28819170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating Heat Transfer During Transient Dropwise Condensation on a Low-Thermal-Conductivity Substrate.
    Macner AM; Daniel S; Steen PH
    Langmuir; 2019 Sep; 35(35):11566-11578. PubMed ID: 31381348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Determination of the Water Condensation Mechanisms on Superhydrophobic and Superhydrophilic Titanium Dioxide Nanotubes.
    Macias-Montero M; Lopez-Santos C; Filippin AN; Rico VJ; Espinos JP; Fraxedas J; Perez-Dieste V; Escudero C; Gonzalez-Elipe AR; Borras A
    Langmuir; 2017 Jul; 33(26):6449-6456. PubMed ID: 28586225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing dropwise condensation through bioinspired wettability patterning.
    Ghosh A; Beaini S; Zhang BJ; Ganguly R; Megaridis CM
    Langmuir; 2014 Nov; 30(43):13103-15. PubMed ID: 25295388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-Liquid Surfaces for Sustainable High-Performance Steam Condensation.
    Monga D; Guo Z; Shan L; Taba SA; Sarma J; Dai X
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13932-13941. PubMed ID: 35287435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Few-layer graphene on nickel enabled sustainable dropwise condensation.
    Chang W; Peng B; Egab K; Zhang Y; Cheng Y; Li X; Ma X; Li C
    Sci Bull (Beijing); 2021 Sep; 66(18):1877-1884. PubMed ID: 36654397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Condensation heat transfer in microgravity conditions.
    Berto A; Azzolin M; Bortolin S; Miscevic M; Lavieille P; Del Col D
    NPJ Microgravity; 2023 Apr; 9(1):32. PubMed ID: 37015948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced condensation heat transfer using porous silica inverse opal coatings on copper tubes.
    Adera S; Naworski L; Davitt A; Mandsberg NK; Shneidman AV; Alvarenga J; Aizenberg J
    Sci Rep; 2021 May; 11(1):10675. PubMed ID: 34021211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Wettability-Induced Heat Transfer Enhancement for Condensation with NonCondensable Gas.
    Shen LY; Tang GH; Li Q; Shi Y
    Langmuir; 2019 Jul; 35(29):9430-9440. PubMed ID: 31282674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of surface wettability on water vapor condensation in nanoscale.
    Niu D; Tang GH
    Sci Rep; 2016 Jan; 6():19192. PubMed ID: 26754316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary-Enhanced Filmwise Condensation in Porous Media.
    Wang R; Antao DS
    Langmuir; 2018 Nov; 34(46):13855-13863. PubMed ID: 30372087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of droplet dynamics and dropwise condensation enhancement: Theory, experiments and applications.
    Wang X; Xu B; Chen Z; Del Col D; Li D; Zhang L; Mou X; Liu Q; Yang Y; Cao Q
    Adv Colloid Interface Sci; 2022 Jul; 305():102684. PubMed ID: 35525088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.