These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 32347878)
41. Ultrafast light-driven metasurfaces with an ultra-broadband frequency agile channel for sensing. Yuan Y; Zhang J; Li C; Li H; Han Y; Lou J Nanoscale; 2024 May; 16(18):9068-9074. PubMed ID: 38639481 [TBL] [Abstract][Full Text] [Related]
42. A phase-change thin film-tuned photonic crystal device. Liu L; Mahmood R; Wei L; Hillier AC; Lu M Nanotechnology; 2019 Jan; 30(4):045203. PubMed ID: 30468679 [TBL] [Abstract][Full Text] [Related]
43. Tunable C Zhang Y; Hao X; Lu X; Liu M; Huang W; Zhang C; Huang W; Xu Y; Zhang W Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541446 [TBL] [Abstract][Full Text] [Related]
44. Slow Wave Applications of Electromagnetically Induced Transparency in Microstrip Resonator. Amin M; Ramzan R; Siddiqui O Sci Rep; 2018 Feb; 8(1):2357. PubMed ID: 29403063 [TBL] [Abstract][Full Text] [Related]
45. Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide. Wang L; Li W; Jiang X Opt Lett; 2015 May; 40(10):2325-8. PubMed ID: 26393730 [TBL] [Abstract][Full Text] [Related]
46. Active control of terahertz surface plasmonic wave excitation using electromagnetically induced transparency based graphene metasurfaces. Li Q; Su H; Xu G; Chen T; Zhang X; Wang S Opt Express; 2023 Nov; 31(23):37452-37463. PubMed ID: 38017873 [TBL] [Abstract][Full Text] [Related]
47. Optical radiation manipulation of Si-Ge Zhou C; Li S; Fan M; Wang X; Xu Y; Xu W; Xiao S; Hu M; Liu J Opt Express; 2020 Mar; 28(7):9690-9701. PubMed ID: 32225571 [TBL] [Abstract][Full Text] [Related]
48. Wideband and Large Angle Electromagnetically Induced Transparency by the Equivalent Transmission Line in a Metasurface. Ning R; Li D; Yang T; Chen Z; Qian H Sci Rep; 2019 Nov; 9(1):15801. PubMed ID: 31676757 [TBL] [Abstract][Full Text] [Related]
49. Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance. Lu Y; Rhee JY; Jang WH; Lee YP Opt Express; 2010 Sep; 18(20):20912-7. PubMed ID: 20940986 [TBL] [Abstract][Full Text] [Related]
50. Loss-induced switching between electromagnetically induced transparency and critical coupling in a chalcogenide waveguide. Zhang B; Sun Y; Xu Y; Hu G; Zeng P; Gao M; Xia D; Huang Y; Li Z Opt Lett; 2021 Jun; 46(12):2828-2831. PubMed ID: 34129551 [TBL] [Abstract][Full Text] [Related]
51. High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes. Xie J; Zhu X; Zang X; Cheng Q; Ye Y; Zhu Y Sci Rep; 2017 Sep; 7(1):11291. PubMed ID: 28900248 [TBL] [Abstract][Full Text] [Related]
52. Controllable EIT-like mode splitting in a chiral microcavity. Zhao G; Zhu J; Hou J; Chen Y; Lin J; Cheng Y; Chen X; Zheng Y; Wan W Opt Lett; 2023 Feb; 48(3):755-758. PubMed ID: 36723581 [TBL] [Abstract][Full Text] [Related]
53. Observation of electromagnetically induced transparency and slow light in the dark state--bright state basis. Lauprêtre T; Ruggiero J; Ghosh R; Bretenaker F; Goldfarb F Opt Express; 2009 Oct; 17(22):19444-50. PubMed ID: 19997164 [TBL] [Abstract][Full Text] [Related]
54. Analogue of electromagnetically induced transparency with high-Q factor in metal-dielectric metamaterials based on bright-bright mode coupling. He F; Han B; Li X; Lang T; Jing X; Hong Z Opt Express; 2019 Dec; 27(26):37590-37600. PubMed ID: 31878538 [TBL] [Abstract][Full Text] [Related]
55. Tunable electromagnetically induced transparency in integrated silicon photonics circuit. Li A; Bogaerts W Opt Express; 2017 Dec; 25(25):31688-31695. PubMed ID: 29245840 [TBL] [Abstract][Full Text] [Related]
56. Graphene plasmonically induced analogue of tunable electromagnetically induced transparency without structurally or spatially asymmetry. He Y; Zhang J; Xu W; Guo C; Liu K; Yuan X; Zhu Z Sci Rep; 2019 Dec; 9(1):20312. PubMed ID: 31889081 [TBL] [Abstract][Full Text] [Related]
57. Analogue of electromagnetically induced transparency in square slotted silicon metasurfaces supporting bound states in the continuum. Algorri JF; Dell'Olio F; Roldán-Varona P; Rodríguez-Cobo L; López-Higuera JM; Sánchez-Pena JM; Dmitriev V; Zografopoulos DC Opt Express; 2022 Jan; 30(3):4615-4630. PubMed ID: 35209694 [TBL] [Abstract][Full Text] [Related]
58. Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material. Guo Z; Jiang H; Li Y; Chen H; Agarwal GS Opt Express; 2018 Jan; 26(2):627-641. PubMed ID: 29401945 [TBL] [Abstract][Full Text] [Related]
59. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Yan X; Yang M; Zhang Z; Liang L; Wei D; Wang M; Zhang M; Wang T; Liu L; Xie J; Yao J Biosens Bioelectron; 2019 Feb; 126():485-492. PubMed ID: 30472446 [TBL] [Abstract][Full Text] [Related]
60. Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells. Yang M; Liang L; Zhang Z; Xin Y; Wei D; Song X; Zhang H; Lu Y; Wang M; Zhang M; Wang T; Yao J Opt Express; 2019 Jul; 27(14):19520-19529. PubMed ID: 31503709 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]