These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

593 related articles for article (PubMed ID: 32348110)

  • 41. Lithium Superionic Conductive Nanofiber-Reinforcing High-Performance Polymer Electrolytes for Solid-State Batteries.
    Peng J; Lu D; Wu S; Yang N; Cui Y; Ma Z; Liu M; Shi Y; Sun Y; Niu J; Wang F
    J Am Chem Soc; 2024 May; 146(17):11897-11905. PubMed ID: 38544372
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulating Interfacial Li-Ion Transport via an Integrated Corrugated 3D Skeleton in Solid Composite Electrolyte for All-Solid-State Lithium Metal Batteries.
    Fan R; Liao W; Fan S; Chen D; Tang J; Yang Y; Liu C
    Adv Sci (Weinh); 2022 Mar; 9(8):e2104506. PubMed ID: 35037427
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.
    Ju J; Wang Y; Chen B; Ma J; Dong S; Chai J; Qu H; Cui L; Wu X; Cui G
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13588-13597. PubMed ID: 29620848
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanoporous Adsorption Effect on Alteration of the Li
    Li W; Zhang S; Wang B; Gu S; Xu D; Wang J; Chen C; Wen Z
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23874-23882. PubMed ID: 29920207
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metal-organic framework (MOF)-incorporated polymeric electrolyte realizing fast lithium-ion transportation with high Li
    Xu Y; Zhao R; Fang J; Liang Z; Gao L; Bian J; Zhu J; Zhao Y
    Front Chem; 2022; 10():1013965. PubMed ID: 36262340
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Review on Polymer-Based Composite Electrolytes for Lithium Batteries.
    Yao P; Yu H; Ding Z; Liu Y; Lu J; Lavorgna M; Wu J; Liu X
    Front Chem; 2019; 7():522. PubMed ID: 31440498
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Foldable nano-Li
    Liu Z; Wang J; Yue X; Xie Z; You H; Wang J; Abudula A; Guan G
    J Colloid Interface Sci; 2022 Sep; 621():232-240. PubMed ID: 35461138
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthetic-Clay-Assisted Carrier Transport in Solid Polymer Electrolytes for Enhanced All-Solid-State Lithium Metal Batteries.
    Sun Z; Deng X; Yan W; Ding S
    Chempluschem; 2023 May; 88(5):e202300117. PubMed ID: 37013358
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rational Design of an Ionic Liquid-Based Electrolyte with High Ionic Conductivity Towards Safe Lithium/Lithium-Ion Batteries.
    Zhang S; Li J; Jiang N; Li X; Pasupath S; Fang Y; Liu Q; Dang D
    Chem Asian J; 2019 Aug; 14(16):2810-2814. PubMed ID: 31242343
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanostructured Metal-Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries.
    Wu JF; Guo X
    Small; 2019 Feb; 15(5):e1804413. PubMed ID: 30624013
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries.
    Wu JF; Pang WK; Peterson VK; Wei L; Guo X
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12461-12468. PubMed ID: 28332828
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-Charge Density Polymerized Ionic Networks Boosting High Ionic Conductivity as Quasi-Solid Electrolytes for High-Voltage Batteries.
    Tian X; Yi Y; Yang P; Liu P; Qu L; Li M; Hu YS; Yang B
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4001-4010. PubMed ID: 30608130
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enabling High-Voltage "Superconcentrated Ionogel-in-Ceramic" Hybrid Electrolyte with Ultrahigh Ionic Conductivity and Single Li
    Zhai Y; Hou W; Tao M; Wang Z; Chen Z; Zeng Z; Liang X; Paoprasert P; Yang Y; Hu N; Song S
    Adv Mater; 2022 Sep; 34(39):e2205560. PubMed ID: 35962756
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fast Li
    Wang N; Chen X; Sun Q; Song Y; Xin T
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39837-39846. PubMed ID: 37552620
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Core-Shell MOF-in-MOF Nanopore Bifunctional Host of Electrolyte for High-Performance Solid-State Lithium Batteries.
    Abdelmaoula AE; Shu J; Cheng Y; Xu L; Zhang G; Xia Y; Tahir M; Wu P; Mai L
    Small Methods; 2021 Aug; 5(8):e2100508. PubMed ID: 34927861
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Multifunctional Gradient Solid Electrolyte Remarkably Improving Interface Compatibility and Ion Transport in Solid-State Lithium Battery.
    Li LX; Li R; Huang ZH; Yang H; Liu MQ; Xiang J; Hussain S; Shen XQ; Jing MX
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):30786-30795. PubMed ID: 35776855
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-Performance Metal-Organic Framework-Based Single Ion Conducting Solid-State Electrolytes for Low-Temperature Lithium Metal Batteries.
    Zhu F; Bao H; Wu X; Tao Y; Qin C; Su Z; Kang Z
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43206-43213. PubMed ID: 31651145
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-Performance All-Solid-State Polymer Electrolyte with Controllable Conductivity Pathway Formed by Self-Assembly of Reactive Discogen and Immobilized via a Facile Photopolymerization for a Lithium-Ion Battery.
    Wang S; Liu X; Wang A; Wang Z; Chen J; Zeng Q; Jiang X; Zhou H; Zhang L
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25273-25284. PubMed ID: 29975039
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facile and Powerful In Situ Polymerization Strategy for Sulfur-Based All-Solid Polymer Electrolytes in Lithium Batteries.
    Xu R; Xiao B; Xuan C; Gao S; Chai J; Liu S; Chen Y; Zheng Y; Cheng X; Guo Q; Liu Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34274-34281. PubMed ID: 34255493
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular Design of a Highly Stable Single-Ion Conducting Polymer Gel Electrolyte.
    Liu K; Jiang S; Dzwiniel TL; Kim HK; Yu Z; Dietz Rago NL; Kim JJ; Fister TT; Yang J; Liu Q; Gilbert J; Cheng L; Srinivasan V; Zhang Z; Liao C
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29162-29172. PubMed ID: 32412737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.