These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32348320)

  • 1. A laser-microfabricated electrohydrodynamic thruster for centimeter-scale aerial robots.
    Hari Prasad HK; Vaddi RS; Chukewad YM; Dedic E; Novosselov I; Fuller SB
    PLoS One; 2020; 15(4):e0231362. PubMed ID: 32348320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: A laser-microfabricated electrohydrodynamic thruster for centimeter-scale aerial robots.
    Prasad HKH; Vaddi RS; Chukewad YM; Dedic E; Novosselov I; Fuller SB
    PLoS One; 2020; 15(8):e0238267. PubMed ID: 32817675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a torsional balance for thrust measurements of Hall effect and microwave-based space propulsion systems.
    Masillo S; Stubbing J; Swar K; Staab D; Garbayo A; Lucca Fabris A
    Rev Sci Instrum; 2022 Nov; 93(11):114501. PubMed ID: 36461544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical model for electrohydrodynamic thrust.
    Vaddi RS; Guan Y; Mamishev A; Novosselov I
    Proc Math Phys Eng Sci; 2020 Sep; 476(2241):20200220. PubMed ID: 33071577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle.
    Jafferis NT; Helbling EF; Karpelson M; Wood RJ
    Nature; 2019 Jun; 570(7762):491-495. PubMed ID: 31243384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thrust stand for vertically oriented electric propulsion performance evaluation.
    Moeller T; Polzin KA
    Rev Sci Instrum; 2010 Nov; 81(11):115108. PubMed ID: 21133502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a cantilever beam thrust stand for electric propulsion thrusters.
    Zhang H; Li DT; Li H
    Rev Sci Instrum; 2020 Nov; 91(11):115104. PubMed ID: 33261444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A compound pendulum for thrust measurement of micro-Newton thruster.
    Xu H; Gao Y; Mao QB; Ye LW; Hu ZK; Zhang K; Song P; Li Q
    Rev Sci Instrum; 2022 Jun; 93(6):064501. PubMed ID: 35778050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inline screw feeding vacuum arc thruster.
    Kronhaus I; Laterza M; Maor Y
    Rev Sci Instrum; 2017 Apr; 88(4):043505. PubMed ID: 28456244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
    Tay WB; van Oudheusden BW; Bijl H
    Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 10 nN resolution thrust-stand for micro-propulsion devices.
    Chakraborty S; Courtney DG; Shea H
    Rev Sci Instrum; 2015 Nov; 86(11):115109. PubMed ID: 26628174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic nozzle radiofrequency plasma thruster approaching twenty percent thruster efficiency.
    Takahashi K
    Sci Rep; 2021 Feb; 11(1):2768. PubMed ID: 33531602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thirty percent conversion efficiency from radiofrequency power to thrust energy in a magnetic nozzle plasma thruster.
    Takahashi K
    Sci Rep; 2022 Nov; 12(1):18618. PubMed ID: 36357485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic Analysis-Based Modeling and Experimental Verification of a New Water-Jet Thruster for an Amphibious Spherical Robot.
    Hou X; Guo S; Shi L; Xing H; Liu Y; Liu H; Hu Y; Xia D; Li Z
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.
    Shang JK; Combes SA; Finio BM; Wood RJ
    Bioinspir Biomim; 2009 Sep; 4(3):036002. PubMed ID: 19713572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of plasma noise on a direct thrust measurement system.
    Pottinger SJ; Lamprou D; Knoll AK; Lappas VJ
    Rev Sci Instrum; 2012 Mar; 83(3):033504. PubMed ID: 22462919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.
    West MD; Charles C; Boswell RW
    Rev Sci Instrum; 2009 May; 80(5):053509. PubMed ID: 19485509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A newly designed decoupling method for micro-Newton thrust measurement.
    Xu H; Mao Q; Gao Y; Wei L; Ding Y; Tu H; Song P; Hu Z; Li Q
    Rev Sci Instrum; 2023 Jan; 94(1):014504. PubMed ID: 36725612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conduction Electrohydrodynamics with Mobile Electrodes: A Novel Actuation System for Untethered Robots.
    Cacucciolo V; Shigemune H; Cianchetti M; Laschi C; Maeda S
    Adv Sci (Weinh); 2017 Sep; 4(9):1600495. PubMed ID: 28932659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of outer wing separation on lift and thrust generation in a flapping wing system.
    Mahardika N; Viet NQ; Park HC
    Bioinspir Biomim; 2011 Sep; 6(3):036006. PubMed ID: 21852715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.