BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32348366)

  • 1. Clinical feasibility of ultrafast intracranial vessel imaging with non-Cartesian spiral 3D time-of-flight MR angiography at 1.5T: An intra-individual comparison study.
    Sartoretti T; Sartoretti E; Schwenk Á; van Smoorenburg L; Mannil M; Euler A; Becker AS; Alfieri A; Najafi A; Binkert CA; Wyss M; Sartoretti-Schefer S
    PLoS One; 2020; 15(4):e0232372. PubMed ID: 32348366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast Intracranial Vessel Imaging With Non-Cartesian Spiral 3-Dimensional Time-of-Flight Magnetic Resonance Angiography at 1.5 T: An In Vitro and Clinical Study in Healthy Volunteers.
    Sartoretti T; van Smoorenburg L; Sartoretti E; Schwenk Á; Binkert CA; Kulcsár Z; Becker AS; Graf N; Wyss M; Sartoretti-Schefer S
    Invest Radiol; 2020 May; 55(5):293-303. PubMed ID: 31895223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly accelerated time-of-flight magnetic resonance angiography using spiral imaging improves conspicuity of intracranial arterial branches while reducing scan time.
    Greve T; Sollmann N; Hock A; Hey S; Gnanaprakasam V; Nijenhuis M; Zimmer C; Kirschke JS
    Eur Radiol; 2020 Feb; 30(2):855-865. PubMed ID: 31664504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing.
    Lin Z; Zhang X; Guo L; Wang K; Jiang Y; Hu X; Huang Y; Wei J; Ma S; Liu Y; Zhu L; Zhuo Z; Liu J; Wang X
    J Magn Reson Imaging; 2019 Dec; 50(6):1843-1851. PubMed ID: 30980468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Ultrafast Spiral Head MR Angiography Compared to Standard MR and CT Angiography.
    Greve T; Sollmann N; Hock A; Zimmer C; Kirschke JS
    J Neuroimaging; 2021 Jan; 31(1):45-56. PubMed ID: 33118692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiral 3D time-of-flight MR angiography for rapid non-contrast carotid artery imaging: Clinical feasibility and protocol optimization.
    Sartoretti E; Sartoretti-Schefer S; van Smoorenburg L; Binkert CA; Gutzeit A; Wyss M; Sartoretti T
    Phys Med; 2022 Jan; 93():20-28. PubMed ID: 34902771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3 T contrast-enhanced magnetic resonance angiography for evaluation of the intracranial arteries: comparison with time-of-flight magnetic resonance angiography and multislice computed tomography angiography.
    Villablanca JP; Nael K; Habibi R; Nael A; Laub G; Finn JP
    Invest Radiol; 2006 Nov; 41(11):799-805. PubMed ID: 17035870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity encoding (SENSE) for high spatial resolution time-of-flight MR angiography of the intracranial arteries at 3.0 T.
    Willinek WA; Gieseke J; von Falkenhausen M; Born M; Hadizadeh D; Manka C; Textor HJ; Schild HH; Kuhl CK
    Rofo; 2004 Jan; 176(1):21-6. PubMed ID: 14712403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of morphometry and intensity features of intracranial arteries from 3D TOF MRA using the intracranial artery feature extraction (iCafe): A reproducibility study.
    Chen L; Mossa-Basha M; Sun J; Hippe DS; Balu N; Yuan Q; Pimentel K; Hatsukami TS; Hwang JN; Yuan C
    Magn Reson Imaging; 2019 Apr; 57():293-302. PubMed ID: 30580079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiral 3-Dimensional T1-Weighted Turbo Field Echo: Increased Speed for Magnetization-Prepared Gradient Echo Brain Magnetic Resonance Imaging.
    Sartoretti T; Sartoretti E; van Smoorenburg L; Schwenk Á; Mannil M; Graf N; Binkert CA; Wyss M; Sartoretti-Schefer S
    Invest Radiol; 2020 Dec; 55(12):775-784. PubMed ID: 32816415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly accelerated intracranial time-of-flight magnetic resonance angiography using wave-encoding.
    Ji Y; Wu W; de Buck MHS; Okell T; Jezzard P
    Magn Reson Med; 2023 Aug; 90(2):432-443. PubMed ID: 37010811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Black-Blood Luminal Angiography Derived from High-Resolution MR Vessel Wall Imaging in Detecting MCA Stenosis: A Preliminary Study.
    Bai X; Lv P; Liu K; Li Q; Ding J; Qu J; Lin J
    AJNR Am J Neuroradiol; 2018 Oct; 39(10):1827-1832. PubMed ID: 30139751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vessel Wall MRI Added to MR Angiography in the Evaluation of Suspected Vasculopathies.
    Song JW; Obusez EC; Raymond SB; Rafla SD; Schaefer PW; Romero JM
    J Neuroimaging; 2019 Jul; 29(4):454-457. PubMed ID: 30761654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating TOF-MRA: The impact of the combined use of compressed sensitivity encoding and spiral imaging.
    Morita K; Uetani H; Nakaura T; Yoneyama M; Nagayama Y; Kidoh M; Shinojima N; Hamasaki T; Mukasa A; Hirai T
    Magn Reson Imaging; 2023 Nov; 103():28-36. PubMed ID: 37406743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography - initial experience.
    Mönninghoff C; Maderwald S; Theysohn JM; Kraff O; Ladd SC; Ladd ME; Forsting M; Quick HH; Wanke I
    Rofo; 2009 Jan; 181(1):16-23. PubMed ID: 19115164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Evaluation of Highly Accelerated Compressed Sensing Time-of-Flight MR Angiography for Intracranial Arterial Stenosis.
    Lu SS; Qi M; Zhang X; Mu XH; Schmidt M; Sun Y; Forman C; Speier P; Hong XN
    AJNR Am J Neuroradiol; 2018 Oct; 39(10):1833-1838. PubMed ID: 30213812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional spin-echo-based black-blood MRA in the detection of vasospasm following subarachnoid hemorrhage.
    Takano K; Hida K; Iwaasa M; Inoue T; Yoshimitsu K
    J Magn Reson Imaging; 2019 Mar; 49(3):800-807. PubMed ID: 30284331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncontrast-enhanced time-resolved 4D dynamic intracranial MR angiography at 7T: A feasibility study.
    Cong F; Zhuo Y; Yu S; Zhang X; Miao X; An J; Wang S; Cao Y; Zhang Y; Song HK; Wang DJ; Yan L
    J Magn Reson Imaging; 2018 Jul; 48(1):111-120. PubMed ID: 29232026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High resolution, magnetization transfer saturation, variable flip angle, time-of-flight MRA in the detection of intracranial vascular stenoses.
    Dagirmanjian A; Ross JS; Obuchowski N; Lewin JS; Tkach JA; Ruggieri PM; Masaryk TJ
    J Comput Assist Tomogr; 1995; 19(5):700-6. PubMed ID: 7560313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved time-of-flight magnetic resonance angiography with IDEAL water-fat separation.
    Grayev A; Shimakawa A; Cousins J; Turski P; Brittain J; Reeder S
    J Magn Reson Imaging; 2009 Jun; 29(6):1367-74. PubMed ID: 19472410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.