BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 32348367)

  • 1. Deep learning in rare disease. Detection of tubers in tuberous sclerosis complex.
    Sánchez Fernández I; Yang E; Calvachi P; Amengual-Gual M; Wu JY; Krueger D; Northrup H; Bebin ME; Sahin M; Yu KH; Peters JM;
    PLoS One; 2020; 15(4):e0232376. PubMed ID: 32348367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Same same but different: A Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations.
    Kubach J; Muhlebner-Fahrngruber A; Soylemezoglu F; Miyata H; Niehusmann P; Honavar M; Rogerio F; Kim SH; Aronica E; Garbelli R; Vilz S; Popp A; Walcher S; Neuner C; Scholz M; Kuerten S; Schropp V; Roeder S; Eichhorn P; Eckstein M; Brehmer A; Kobow K; Coras R; Blumcke I; Jabari S
    Epilepsia; 2020 Mar; 61(3):421-432. PubMed ID: 32080846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpreting deep learning models for glioma survival classification using visualization and textual explanations.
    Osadebey M; Liu Q; Fuster-Garcia E; Emblem KE
    BMC Med Inform Decis Mak; 2023 Oct; 23(1):225. PubMed ID: 37853371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convolutional neural networks to identify malformations of cortical development: A feasibility study.
    Sánchez Fernández I; Yang E; Amengual-Gual M; Barcia Aguilar C; Calvachi Prieto P; Peters JM
    Seizure; 2021 Oct; 91():81-90. PubMed ID: 34130195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging.
    Zhang Y; Hong D; McClement D; Oladosu O; Pridham G; Slaney G
    J Neurosci Methods; 2021 Apr; 353():109098. PubMed ID: 33582174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks.
    Sujit SJ; Coronado I; Kamali A; Narayana PA; Gabr RE
    J Magn Reson Imaging; 2019 Oct; 50(4):1260-1267. PubMed ID: 30811739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different MRI-defined tuber types in tuberous sclerosis complex: Quantitative evaluation and association with disease manifestations.
    Jesmanas S; Norvainytė K; Gleiznienė R; Šimoliūnienė R; Endzinienė M
    Brain Dev; 2018 Mar; 40(3):196-204. PubMed ID: 29258718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphometric MRI analysis enhances visualization of cortical tubers in tuberous sclerosis.
    House PM; Holst B; Lindenau M; Voges B; Kohl B; Martens T; Lanz M; Stodieck S; Huppertz HJ
    Epilepsy Res; 2015 Nov; 117():29-34. PubMed ID: 26370915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
    Spasov S; Passamonti L; Duggento A; Liò P; Toschi N;
    Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model.
    Saha S; Pagnozzi A; Bourgeat P; George JM; Bradford D; Colditz PB; Boyd RN; Rose SE; Fripp J; Pannek K
    Neuroimage; 2020 Jul; 215():116807. PubMed ID: 32278897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New imaging features of tuberous sclerosis complex: A 7 T MRI study.
    Sun K; Cui J; Xue R; Jiang T; Wang B; Zhang Z; Zhuo Y; Zhou XJ; Liang S; Yu X; Chen L
    NMR Biomed; 2021 Sep; 34(9):e4565. PubMed ID: 34061413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning-based Identification of Brain MRI Sequences Using a Model Trained on Large Multicentric Study Cohorts.
    Mahmutoglu MA; Preetha CJ; Meredig H; Tonn JC; Weller M; Wick W; Bendszus M; Brugnara G; Vollmuth P
    Radiol Artif Intell; 2024 Jan; 6(1):e230095. PubMed ID: 38166331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research on multi-class orthodontic image recognition system based on deep learning network model].
    Wang SF; Xie XJ; Zhang L; Chang S; Zuo FF; Wang YJ; Bai YX
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2023 Jun; 58(6):561-568. PubMed ID: 37272001
    [No Abstract]   [Full Text] [Related]  

  • 16. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis.
    Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X
    Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms.
    Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU
    Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain MRI analysis using a deep learning based evolutionary approach.
    Shahamat H; Saniee Abadeh M
    Neural Netw; 2020 Jun; 126():218-234. PubMed ID: 32259762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.
    Wang CJ; Hamm CA; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Weinreb JC; Duncan JS; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3348-3357. PubMed ID: 31093705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What Does Deep Learning See? Insights From a Classifier Trained to Predict Contrast Enhancement Phase From CT Images.
    Philbrick KA; Yoshida K; Inoue D; Akkus Z; Kline TL; Weston AD; Korfiatis P; Takahashi N; Erickson BJ
    AJR Am J Roentgenol; 2018 Dec; 211(6):1184-1193. PubMed ID: 30403527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.