BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 32348450)

  • 1. PRIME: a probabilistic imputation method to reduce dropout effects in single-cell RNA sequencing.
    Jeong H; Liu Z
    Bioinformatics; 2020 Jul; 36(13):4021-4029. PubMed ID: 32348450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AGImpute: imputation of scRNA-seq data based on a hybrid GAN with dropouts identification.
    Zhu X; Meng S; Li G; Wang J; Peng X
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38317025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imputation method for single-cell RNA-seq data using neural topic model.
    Qi Y; Han S; Tang L; Liu L
    Gigascience; 2022 Dec; 12():. PubMed ID: 38000911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient scRNA-seq dropout imputation method using graph attention network.
    Xu C; Cai L; Gao J
    BMC Bioinformatics; 2021 Dec; 22(1):582. PubMed ID: 34876032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scKWARN: Kernel-weighted-average robust normalization for single-cell RNA-seq data.
    Hsu CY; Chang CJ; Liu Q; Shyr Y
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38237908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scBatch: batch-effect correction of RNA-seq data through sample distance matrix adjustment.
    Fei T; Yu T
    Bioinformatics; 2020 May; 36(10):3115-3123. PubMed ID: 32053185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G2S3: A gene graph-based imputation method for single-cell RNA sequencing data.
    Wu W; Liu Y; Dai Q; Yan X; Wang Z
    PLoS Comput Biol; 2021 May; 17(5):e1009029. PubMed ID: 34003861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective single-cell clustering through ensemble feature selection and similarity measurements.
    Jeong H; Khunlertgit N
    Comput Biol Chem; 2020 May; 87():107283. PubMed ID: 32585598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of computational strategies for denoising and imputation of single-cell transcriptomic data.
    Patruno L; Maspero D; Craighero F; Angaroni F; Antoniotti M; Graudenzi A
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33003202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BFF and cellhashR: analysis tools for accurate demultiplexing of cell hashing data.
    Boggy GJ; McElfresh GW; Mahyari E; Ventura AB; Hansen SG; Picker LJ; Bimber BN
    Bioinformatics; 2022 May; 38(10):2791-2801. PubMed ID: 35561167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainty-aware single-cell annotation with a hierarchical reject option.
    Theunissen L; Mortier T; Saeys Y; Waegeman W
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38441258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models.
    Ding J; Condon A; Shah SP
    Nat Commun; 2018 May; 9(1):2002. PubMed ID: 29784946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FITs: forest of imputation trees for recovering true signals in single-cell open chromatin profiles.
    Sharma R; Pandey N; Mongia A; Mishra S; Majumdar A; Kumar V
    NAR Genom Bioinform; 2020 Dec; 2(4):lqaa091. PubMed ID: 33575635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis.
    Sarkar A; Stephens M
    Nat Genet; 2021 Jun; 53(6):770-777. PubMed ID: 34031584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CALISTA: Clustering and LINEAGE Inference in Single-Cell Transcriptional Analysis.
    Papili Gao N; Hartmann T; Fang T; Gunawan R
    Front Bioeng Biotechnol; 2020; 8():18. PubMed ID: 32117910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demultiplexing of single-cell RNA-sequencing data using interindividual variation in gene expression.
    Nassiri I; Kwok AJ; Bhandari A; Bull KR; Garner LC; Klenerman P; Webber C; Parkkinen L; Lee AW; Wu Y; Fairfax B; Knight JC; Buck D; Piazza P
    Bioinform Adv; 2024; 4(1):vbae085. PubMed ID: 38911824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GRAPHICAL MODELS FOR ZERO-INFLATED SINGLE CELL GENE EXPRESSION.
    McDavid A; Gottardo R; Simon N; Drton M
    Ann Appl Stat; 2019 Jun; 13(2):848-873. PubMed ID: 31388390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GRACE: Graph autoencoder based single-cell clustering through ensemble similarity learning.
    Ha JS; Jeong H
    PLoS One; 2023; 18(4):e0284527. PubMed ID: 37058497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network-Based Structural Alignment of RNA Sequences Using TOPAS.
    Chen CC; Jeong H; Qian X; Yoon BJ
    Methods Mol Biol; 2023; 2586():147-162. PubMed ID: 36705903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell specific and interpretable machine learning models for sparse scChIP-seq data imputation.
    Albrecht S; Andreani T; Andrade-Navarro MA; Fontaine JF
    PLoS One; 2022; 17(7):e0270043. PubMed ID: 35776722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.