These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32348463)

  • 1. PPTPP: a novel therapeutic peptide prediction method using physicochemical property encoding and adaptive feature representation learning.
    Zhang YP; Zou Q
    Bioinformatics; 2020 Jul; 36(13):3982-3987. PubMed ID: 32348463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning.
    Wei L; Zhou C; Su R; Zou Q
    Bioinformatics; 2019 Nov; 35(21):4272-4280. PubMed ID: 30994882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning.
    Wei L; Ye X; Sakurai T; Mu Z; Wei L
    Bioinformatics; 2022 Mar; 38(6):1514-1524. PubMed ID: 34999757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides.
    Wei L; Zhou C; Chen H; Song J; Su R
    Bioinformatics; 2018 Dec; 34(23):4007-4016. PubMed ID: 29868903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. StackCPPred: a stacking and pairwise energy content-based prediction of cell-penetrating peptides and their uptake efficiency.
    Fu X; Cai L; Zeng X; Zou Q
    Bioinformatics; 2020 May; 36(10):3028-3034. PubMed ID: 32105326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iBitter-Fuse: A Novel Sequence-Based Bitter Peptide Predictor by Fusing Multi-View Features.
    Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Lio' P; Shoombuatong W
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TPpred-ATMV: therapeutic peptide prediction by adaptive multi-view tensor learning model.
    Yan K; Lv H; Guo Y; Chen Y; Wu H; Liu B
    Bioinformatics; 2022 May; 38(10):2712-2718. PubMed ID: 35561206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HLPpred-Fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation.
    Hasan MM; Schaduangrat N; Basith S; Lee G; Shoombuatong W; Manavalan B
    Bioinformatics; 2020 Jun; 36(11):3350-3356. PubMed ID: 32145017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mAHTPred: a sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation.
    Manavalan B; Basith S; Shin TH; Wei L; Lee G
    Bioinformatics; 2019 Aug; 35(16):2757-2765. PubMed ID: 30590410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou's 5-Steps Rule and Informative Physicochemical Properties.
    Charoenkwan P; Schaduangrat N; Nantasenamat C; Piacham T; Shoombuatong W
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31861928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning architecture for metabolic pathway prediction.
    Baranwal M; Magner A; Elvati P; Saldinger J; Violi A; Hero AO
    Bioinformatics; 2020 Apr; 36(8):2547-2553. PubMed ID: 31879763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CPPred-FL: a sequence-based predictor for large-scale identification of cell-penetrating peptides by feature representation learning.
    Qiang X; Zhou C; Ye X; Du PF; Su R; Wei L
    Brief Bioinform; 2020 Jan; 21(1):11-23. PubMed ID: 30239616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ITP-Pred: an interpretable method for predicting, therapeutic peptides with fused features low-dimension representation.
    Cai L; Wang L; Fu X; Xia C; Zeng X; Zou Q
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepMSPeptide: peptide detectability prediction using deep learning.
    Serrano G; Guruceaga E; Segura V
    Bioinformatics; 2020 Feb; 36(4):1279-1280. PubMed ID: 31529040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Better understanding and prediction of antiviral peptides through primary and secondary structure feature importance.
    Chowdhury AS; Reehl SM; Kehn-Hall K; Bishop B; Webb-Robertson BM
    Sci Rep; 2020 Nov; 10(1):19260. PubMed ID: 33159146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AIEpred: An Ensemble Predictive Model of Classifier Chain to Identify Anti-Inflammatory Peptides.
    Zhang J; Zhang Z; Pu L; Tang J; Guo F
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1831-1840. PubMed ID: 31985437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Silico Approaches for the Prediction and Analysis of Antiviral Peptides: A Review.
    Charoenkwan P; Anuwongcharoen N; Nantasenamat C; Hasan MM; Shoombuatong W
    Curr Pharm Des; 2021; 27(18):2180-2188. PubMed ID: 33138759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ampir: an R package for fast genome-wide prediction of antimicrobial peptides.
    Fingerhut LCHW; Miller DJ; Strugnell JM; Daly NL; Cooke IR
    Bioinformatics; 2021 Jan; 36(21):5262-5263. PubMed ID: 32683445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.