BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 32348527)

  • 21. The ABCs of flower development: mutational analysis of AP1/FUL-like genes in rice provides evidence for a homeotic (A)-function in grasses.
    Wu F; Shi X; Lin X; Liu Y; Chong K; Theißen G; Meng Z
    Plant J; 2017 Jan; 89(2):310-324. PubMed ID: 27689766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and characterization of two bamboo (Phyllostachys praecox) AP1/SQUA-like MADS-box genes during floral transition.
    Lin EP; Peng HZ; Jin QY; Deng MJ; Li T; Xiao XC; Hua XQ; Wang KH; Bian HW; Han N; Zhu MY
    Planta; 2009 Dec; 231(1):109-20. PubMed ID: 19855996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development.
    Müller BM; Saedler H; Zachgo S
    Plant J; 2001 Oct; 28(2):169-79. PubMed ID: 11722760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition.
    Ruokolainen S; Ng YP; Broholm SK; Albert VA; Elomaa P; Teeri TH
    BMC Plant Biol; 2010 Jun; 10():128. PubMed ID: 20579337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes.
    Alvarez-Buylla ER; García-Ponce B; Garay-Arroyo A
    J Exp Bot; 2006; 57(12):3099-107. PubMed ID: 16893974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 'Living stones' reveal alternative petal identity programs within the core eudicots.
    Brockington SF; Rudall PJ; Frohlich MW; Oppenheimer DG; Soltis PS; Soltis DE
    Plant J; 2012 Jan; 69(2):193-203. PubMed ID: 21951031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility.
    Huang F; Xu G; Chi Y; Liu H; Xue Q; Zhao T; Gai J; Yu D
    BMC Plant Biol; 2014 Apr; 14():89. PubMed ID: 24693922
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes.
    Fornara F; Parenicová L; Falasca G; Pelucchi N; Masiero S; Ciannamea S; Lopez-Dee Z; Altamura MM; Colombo L; Kater MM
    Plant Physiol; 2004 Aug; 135(4):2207-19. PubMed ID: 15299121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ectopic expression of the AaFUL1 gene identified in Anthurium andraeanum affected floral organ development and seed fertility in tobacco.
    Ma G; Zou Q; Shi X; Tian D; Sheng Q
    Gene; 2019 May; 696():197-205. PubMed ID: 30802537
    [TBL] [Abstract][Full Text] [Related]  

  • 30. B and E MADS-box genes determine the perianth formation in Cymbidium goeringii Rchb.f.
    Xiang L; Chen Y; Chen L; Fu X; Zhao K; Zhang J; Sun C
    Physiol Plant; 2018 Mar; 162(3):353-369. PubMed ID: 28967227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and Functional Analysis of
    Liu W; Shen X; Liang H; Wang Y; He Z; Zhang D; Chen F
    Front Plant Sci; 2018; 9():1743. PubMed ID: 30534136
    [No Abstract]   [Full Text] [Related]  

  • 32. Floral meristem identity genes are expressed during tendril development in grapevine.
    Calonje M; Cubas P; Martínez-Zapater JM; Carmona MJ
    Plant Physiol; 2004 Jul; 135(3):1491-501. PubMed ID: 15247405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species.
    Berbel A; Navarro C; Ferrándiz C; Cañas LA; Madueño F; Beltrán JP
    Plant J; 2001 Feb; 25(4):441-51. PubMed ID: 11260500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of 10 MADS-box genes from Pyrus pyrifolia and their differential expression during fruit development and ripening.
    Ubi BE; Saito T; Bai S; Nishitani C; Ban Y; Ikeda K; Ito A; Moriguchi T
    Gene; 2013 Oct; 528(2):183-94. PubMed ID: 23891821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development.
    Liu C; Zhang J; Zhang N; Shan H; Su K; Zhang J; Meng Z; Kong H; Chen Z
    Mol Biol Evol; 2010 Jul; 27(7):1598-611. PubMed ID: 20147438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development.
    Litt A; Irish VF
    Genetics; 2003 Oct; 165(2):821-33. PubMed ID: 14573491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DEF- and GLO-like proteins may have lost most of their interaction partners during angiosperm evolution.
    Melzer R; Härter A; Rümpler F; Kim S; Soltis PS; Soltis DE; Theißen G
    Ann Bot; 2014 Nov; 114(7):1431-43. PubMed ID: 24902716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Duplication of AP1 within the Spinacia oleracea L. AP1/FUL clade is followed by rapid amino acid and regulatory evolution.
    Sather DN; Golenberg EM
    Planta; 2009 Feb; 229(3):507-21. PubMed ID: 19005675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition.
    Yu H; Goh CJ
    Plant Physiol; 2000 Aug; 123(4):1325-36. PubMed ID: 10938351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa).
    Cui R; Han J; Zhao S; Su K; Wu F; Du X; Xu Q; Chong K; Theissen G; Meng Z
    Plant J; 2010 Mar; 61(5):767-81. PubMed ID: 20003164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.