These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32348930)

  • 1. Experimental and modeling evidence of kilometer-scale anomalous tracer transport in an alpine karst aquifer.
    Goeppert N; Goldscheider N; Berkowitz B
    Water Res; 2020 Jul; 178():115755. PubMed ID: 32348930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field Tracer Tests to Evaluate Transport Properties of Tryptophan and Humic Acid in Karst.
    Frank S; Goeppert N; Goldscheider N
    Ground Water; 2021 Jan; 59(1):59-70. PubMed ID: 32390185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of pollution and recovery time of karst springs, an example from a carbonate aquifer in Israel.
    Magal E; Arbel Y; Caspi S; Glazman H; Greenbaum N; Yechieli Y
    J Contam Hydrol; 2013 Feb; 145():26-36. PubMed ID: 23270817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing "anomalous" contaminant transport in porous media: the CTRW MATLAB toolbox.
    Cortis A; Berkowitz B
    Ground Water; 2005; 43(6):947-50. PubMed ID: 16324017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice Boltzmann models for flow and transport in saturated karst.
    Anwar S; Sukop MC
    Ground Water; 2009; 47(3):401-13. PubMed ID: 19016892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Estimation of Solute Storage and Release in Karst Water Systems, South China.
    Zhang L; Luo M; Chen Z
    Int J Environ Res Public Health; 2020 Oct; 17(19):. PubMed ID: 33023167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport-based source tracking of contaminants in a karst aquifer: Model implementation, proof of concept, and application to event-based field data.
    Schiperski F; Zirlewagen J; Stange C; Tiehm A; Licha T; Scheytt T
    Water Res; 2022 Apr; 213():118145. PubMed ID: 35151087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved understanding of particle transport in karst groundwater using natural sediments as tracers.
    Goeppert N; Goldscheider N
    Water Res; 2019 Dec; 166():115045. PubMed ID: 31526978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model.
    Abusaada M; Sauter M
    Ground Water; 2013; 51(4):641-50. PubMed ID: 23039080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico.
    Ghasemizadeh R; Hellweger F; Butscher C; Padilla I; Vesper D; Field M; Alshawabkeh A
    Hydrogeol J; 2012 Dec; 20(8):1441-1461. PubMed ID: 23645996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Back to the future: Comparing yeast as an outmoded artificial tracer for simulating microbial transport in karst aquifer systems to more modern approaches.
    Vucinic L; O'Connell D; Coxon C; Gill L
    Environ Pollut; 2024 May; 349():123942. PubMed ID: 38604303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling solute transport in one-dimensional homogeneous and heterogeneous soil columns with continuous time random walk.
    Xiong Y; Huang G; Huang Q
    J Contam Hydrol; 2006 Aug; 86(3-4):163-75. PubMed ID: 16687188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement and analysis of non-Fickian dispersion in heterogeneous porous media.
    Levy M; Berkowitz B
    J Contam Hydrol; 2003 Jul; 64(3-4):203-26. PubMed ID: 12814881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Step-like rising and falling of a breakthrough curve observed at a karst spring.
    Liu H; Li G
    J Contam Hydrol; 2020 Nov; 235():103726. PubMed ID: 33031983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of road salt contamination in karst aquifers and soils over multiple timescales.
    Robinson HK; Hasenmueller EA
    Sci Total Environ; 2017 Dec; 603-604():94-108. PubMed ID: 28623795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anthropogenic contaminants as tracers in an urbanizing karst aquifer.
    Mahler B; Massei N
    J Contam Hydrol; 2007 Apr; 91(1-2):81-106. PubMed ID: 17161500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of contaminant transport in fractured carbonate aquifer types: a case study of the Permian Magnesian Limestone Group (NE England, UK).
    Medici G; West LJ; Chapman PJ; Banwart SA
    Environ Sci Pollut Res Int; 2019 Aug; 26(24):24863-24884. PubMed ID: 31240647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Practical Modeling Framework for Non-Fickian Transport and Multi-Species Sequential First-Order Reaction.
    Burnell DK; Xu J; Hansen SK; Sims LS; Faust CR
    Ground Water; 2018 Jul; 56(4):524-540. PubMed ID: 29532911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport and Attenuation of Particles of Different Density and Surface Charge: A Karst Aquifer Field Study.
    Schiperski F; Zirlewagen J; Scheytt T
    Environ Sci Technol; 2016 Aug; 50(15):8028-35. PubMed ID: 27348254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solute and colloid transport in karst conduits under low- and high-flow conditions.
    Göppert N; Goldscheider N
    Ground Water; 2008; 46(1):61-8. PubMed ID: 18181865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.