These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 32348967)

  • 1. Hematite photoanode modified with inexpensive hole-storage layer for highly efficient solar water oxidation.
    He X; Shang C; Meng Q; Chen Z; Jin M; Shui L; Zhang Y; Zhang Z; Yuan M; Wang X; Kempa K; Zhou G
    Nanotechnology; 2020 Nov; 31(45):455405. PubMed ID: 32348967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.
    Gurudayal ; Chee PM; Boix PP; Ge H; Yanan F; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6852-9. PubMed ID: 25790720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Modification of Hematite Photoanodes with CeO
    Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH
    ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quaternary Core-Shell Oxynitride Nanowire Photoanode Containing a Hole-Extraction Gradient for Photoelectrochemical Water Oxidation.
    Ma Z; Thersleff T; Görne AL; Cordes N; Liu Y; Jakobi S; Rokicinska A; Schichtl ZG; Coridan RH; Kustrowski P; Schnick W; Dronskowski R; Slabon A
    ACS Appl Mater Interfaces; 2019 May; 11(21):19077-19086. PubMed ID: 31067020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual co-catalysts activated hematite nanorods with low turn-on potential and enhanced charge collection for efficient solar water oxidation.
    Maity D; Pal D; Karmakar K; Rakshit R; Khan GG; Mandal K
    Nanotechnology; 2022 Apr; 33(26):. PubMed ID: 35303734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Synthesis of α-Fe
    Lei B; Xu D; Wei B; Xie T; Xiao C; Jin W; Xu L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4785-4795. PubMed ID: 33430580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting.
    Mao L; Huang YC; Fu Y; Dong CL; Shen S
    Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface and surface engineering of hematite photoanode for efficient solar water oxidation.
    Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S
    J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles.
    Chen B; Fan W; Mao B; Shen H; Shi W
    Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grey hematite photoanodes decrease the onset potential in photoelectrochemical water oxidation.
    Liu PF; Wang C; Wang Y; Li Y; Zhang B; Zheng LR; Jiang Z; Zhao H; Yang HG
    Sci Bull (Beijing); 2021 May; 66(10):1013-1021. PubMed ID: 36654246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Surface Passivation and Hole Transport Layer on Hematite Photoanodes Enabling Robust Photoelectrocatalytic Water Oxidation.
    Xie H; Song Y; Jiao Y; Gao L; Shi S; Wang C; Hou J
    ACS Nano; 2024 Feb; ():. PubMed ID: 38343104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Back electron-hole recombination in hematite photoanodes for water splitting.
    Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR
    J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing the Influence of Doping and Surface Treatment on the Surface Carrier Dynamics in Hematite Nanorod Photoanodes.
    Gurudayal ; Peter LM; Wong LH; Abdi FF
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41265-41272. PubMed ID: 29099583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Fabrication of a Highly Crystalline and Well-Interconnected Hematite Nanoparticle Photoanode for Efficient Visible-Light-Driven Water Oxidation.
    Katsuki T; Zahran ZN; Tanaka K; Eo T; Mohamed EA; Tsubonouchi Y; Berber MR; Yagi M
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39282-39290. PubMed ID: 34387481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface engineering of hematite nanorods photoanode towards optimized photoelectrochemical water splitting.
    Li Z; Wu J; Liao L; He X; Huang B; Zhang S; Wei Y; Wang S; Zhou W
    J Colloid Interface Sci; 2022 Nov; 626():879-888. PubMed ID: 35835039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate-Electrode Interface Engineering by an Electron-Transport Layer in Hematite Photoanode.
    Ding C; Wang Z; Shi J; Yao T; Li A; Yan P; Huang B; Li C
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7086-91. PubMed ID: 26926845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation.
    Li C; Wang T; Luo Z; Liu S; Gong J
    Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting.
    Kim JY; Magesh G; Youn DH; Jang JW; Kubota J; Domen K; Lee JS
    Sci Rep; 2013; 3():2681. PubMed ID: 24045290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.
    Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.