These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 32349249)

  • 1. Application of CRISPR Tools for Variant Interpretation and Disease Modeling in Inherited Retinal Dystrophies.
    Fuster-García C; García-Bohórquez B; Rodríguez-Muñoz A; Millán JM; García-García G
    Genes (Basel); 2020 Apr; 11(5):. PubMed ID: 32349249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Editing Tools for Gene Therapy in Inherited Retinal Dystrophies.
    Pulman J; Sahel JA; Dalkara D
    CRISPR J; 2022 Jun; 5(3):377-388. PubMed ID: 35506982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR Cas9 based genome editing in inherited retinal dystrophies.
    Bansal M; Acharya S; Sharma S; Phutela R; Rauthan R; Maiti S; Chakraborty D
    Ophthalmic Genet; 2021 Aug; 42(4):365-374. PubMed ID: 33821751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 corrects retinal dystrophy in rats.
    Graham DM
    Lab Anim (NY); 2016 Mar; 45(3):85. PubMed ID: 26886660
    [No Abstract]   [Full Text] [Related]  

  • 5. Applying switchable Cas9 variants to in vivo gene editing for therapeutic applications.
    Mills EM; Barlow VL; Luk LYP; Tsai YH
    Cell Biol Toxicol; 2020 Feb; 36(1):17-29. PubMed ID: 31418127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration.
    Burnight ER; Giacalone JC; Cooke JA; Thompson JR; Bohrer LR; Chirco KR; Drack AV; Fingert JH; Worthington KS; Wiley LA; Mullins RF; Stone EM; Tucker BA
    Prog Retin Eye Res; 2018 Jul; 65():28-49. PubMed ID: 29578069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa.
    Bakondi B; Lv W; Lu B; Jones MK; Tsai Y; Kim KJ; Levy R; Akhtar AA; Breunig JJ; Svendsen CN; Wang S
    Mol Ther; 2016 Mar; 24(3):556-63. PubMed ID: 26666451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Directed Gene Editing Catalyzes Precise Gene Segment Replacement
    Sansbury BM; Wagner AM; Tarcic G; Barth S; Nitzan E; Goldfus R; Vidne M; Kmiec EB
    CRISPR J; 2019 Apr; 2():121-132. PubMed ID: 30998096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [CRISPR-Cas9 for muscle dystrophies].
    Ballouhey O; Bartoli M; Levy N
    Med Sci (Paris); 2020 Apr; 36(4):358-366. PubMed ID: 32356712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single AAV-mediated mutation replacement genome editing in limited number of photoreceptors restores vision in mice.
    Nishiguchi KM; Fujita K; Miya F; Katayama S; Nakazawa T
    Nat Commun; 2020 Jan; 11(1):482. PubMed ID: 31980606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9; an efficient tool for precise plant genome editing.
    Islam W
    Mol Cell Probes; 2018 Jun; 39():47-52. PubMed ID: 29621557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Application of CRISPR/Cas9 for the Treatment of Retinal Diseases.
    Peddle CF; MacLaren RE
    Yale J Biol Med; 2017 Dec; 90(4):533-541. PubMed ID: 29259519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9 System and its Research Progress in Gene Therapy.
    Liu W; Yang C; Liu Y; Jiang G
    Anticancer Agents Med Chem; 2019; 19(16):1912-1919. PubMed ID: 31633477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prime Editing: A Novel Cas9-Reverse Transcriptase Fusion May Revolutionize Genome Editing.
    Flotte TR; Gao G
    Hum Gene Ther; 2019 Dec; 30(12):1445-1446. PubMed ID: 31860398
    [No Abstract]   [Full Text] [Related]  

  • 16. In vivo genome editing as a potential treatment strategy for inherited retinal dystrophies.
    Yanik M; Müller B; Song F; Gall J; Wagner F; Wende W; Lorenz B; Stieger K
    Prog Retin Eye Res; 2017 Jan; 56():1-18. PubMed ID: 27623223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The new landscape of retinal gene therapy.
    Ku CA; Pennesi ME
    Am J Med Genet C Semin Med Genet; 2020 Sep; 184(3):846-859. PubMed ID: 32888388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases.
    Kolli N; Lu M; Maiti P; Rossignol J; Dunbar GL
    Neurochem Int; 2018 Jan; 112():187-196. PubMed ID: 28732771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.