BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32349860)

  • 1. Epigenetic changes and their relationship to somaclonal variation: a need to monitor the micropropagation of plantation crops.
    Azizi P; Hanafi MM; Sahebi M; Harikrishna JA; Taheri S; Yassoralipour A; Nasehi A
    Funct Plant Biol; 2020 May; 47(6):508-523. PubMed ID: 32349860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications.
    Neelakandan AK; Wang K
    Plant Cell Rep; 2012 Apr; 31(4):597-620. PubMed ID: 22179259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm.
    Ong-Abdullah M; Ordway JM; Jiang N; Ooi SE; Kok SY; Sarpan N; Azimi N; Hashim AT; Ishak Z; Rosli SK; Malike FA; Bakar NA; Marjuni M; Abdullah N; Yaakub Z; Amiruddin MD; Nookiah R; Singh R; Low ET; Chan KL; Azizi N; Smith SW; Bacher B; Budiman MA; Van Brunt A; Wischmeyer C; Beil M; Hogan M; Lakey N; Lim CC; Arulandoo X; Wong CK; Choo CN; Wong WC; Kwan YY; Alwee SS; Sambanthamurthi R; Martienssen RA
    Nature; 2015 Sep; 525(7570):533-7. PubMed ID: 26352475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetics and Epigenomics of Plants.
    Yadav CB; Pandey G; Muthamilarasan M; Prasad M
    Adv Biochem Eng Biotechnol; 2018; 164():237-261. PubMed ID: 29356846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The causes and consequences of DNA methylome variation in plants.
    Seymour DK; Becker C
    Curr Opin Plant Biol; 2017 Apr; 36():56-63. PubMed ID: 28226269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue culture-induced DNA methylation in crop plants: a review.
    Ghosh A; Igamberdiev AU; Debnath SC
    Mol Biol Rep; 2021 Jan; 48(1):823-841. PubMed ID: 33394224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heritable Epigenomic Changes to the Maize Methylome Resulting from Tissue Culture.
    Han Z; Crisp PA; Stelpflug S; Kaeppler SM; Li Q; Springer NM
    Genetics; 2018 Aug; 209(4):983-995. PubMed ID: 29848487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crop Epigenomics: Identifying, Unlocking, and Harnessing Cryptic Variation in Crop Genomes.
    Ji L; Neumann DA; Schmitz RJ
    Mol Plant; 2015 Jun; 8(6):860-70. PubMed ID: 25638564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetics and crop improvement.
    Springer NM
    Trends Genet; 2013 Apr; 29(4):241-7. PubMed ID: 23128009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenomic landscape and epigenetic regulation in maize.
    Yu J; Xu F; Wei Z; Zhang X; Chen T; Pu L
    Theor Appl Genet; 2020 May; 133(5):1467-1489. PubMed ID: 31965233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond.
    Miguel C; Marum L
    J Exp Bot; 2011 Jul; 62(11):3713-25. PubMed ID: 21617249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA methylation: from model plants to vegetable crops.
    Nie WF
    Biochem Soc Trans; 2021 Jun; 49(3):1479-1487. PubMed ID: 34060587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing epigenetic variability for crop improvement: current status and future prospects.
    Kim EY; Kim KD; Cho J
    Genes Genomics; 2022 Mar; 44(3):259-266. PubMed ID: 34807374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons.
    Song Q; Zhang T; Stelly DM; Chen ZJ
    Genome Biol; 2017 May; 18(1):99. PubMed ID: 28558752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant epigenomics for extenuation of abiotic stresses: challenges and future perspectives.
    Singh D; Chaudhary P; Taunk J; Kumar Singh C; Sharma S; Singh VJ; Singh D; Chinnusamy V; Yadav R; Pal M
    J Exp Bot; 2021 Oct; 72(20):6836-6855. PubMed ID: 34302734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rice epigenomics and epigenetics: challenges and opportunities.
    Chen X; Zhou DX
    Curr Opin Plant Biol; 2013 May; 16(2):164-9. PubMed ID: 23562565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transposable elements, a treasure trove to decipher epigenetic variation: insights from Arabidopsis and crop epigenomes.
    Mirouze M; Vitte C
    J Exp Bot; 2014 Jun; 65(10):2801-12. PubMed ID: 24744427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of epigenetic modifications in the development of crops essential traits.
    Wang YN; Xu T; Wang WP; Zhang QZ; Xie LN
    Yi Chuan; 2021 Sep; 43(9):858-879. PubMed ID: 34702699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding epigenomics based on the rice model.
    Lu Y; Zhou DX; Zhao Y
    Theor Appl Genet; 2020 May; 133(5):1345-1363. PubMed ID: 31897514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.