These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 323499)

  • 21. Role of the beta-phosphate-gamma-phosphate interchange reaction of adenosine triphosphate in amino acid discrimination by valyl- and methionyl-tRNA synthetases from Escherichia coli.
    Smith LT; Cohn M
    Biochemistry; 1981 Jan; 20(2):385-91. PubMed ID: 6258639
    [No Abstract]   [Full Text] [Related]  

  • 22. Analogs of methionyl-tRNA synthetase substrates containing photolabile groups.
    Wetzel R; Söll D
    Nucleic Acids Res; 1977; 4(5):1681-94. PubMed ID: 331263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli.
    Varshney U; RajBhandary UL
    J Bacteriol; 1992 Dec; 174(23):7819-26. PubMed ID: 1447148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cobalt(III) labeling of methionyl-tRNA synthetase from Escherichia coli.
    Kalogerakos T; Blanquet S; Waller JP
    Eur J Biochem; 1979 Jan; 93(2):339-43. PubMed ID: 371961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An editing mechanism for the methionyl-tRNA synthetase in the selection of amino acids in protein synthesis.
    Fersht AR; Dingwall C
    Biochemistry; 1979 Apr; 18(7):1250-6. PubMed ID: 427110
    [No Abstract]   [Full Text] [Related]  

  • 26. Role of methionyl-transfer ribonucleic acid in the regulation of methionyl-transfer ribonucleic acid synthetase of Escherichia coli K-12.
    Cassio D
    J Bacteriol; 1975 Aug; 123(2):589-97. PubMed ID: 1097419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases.
    Jakubowski H; Fersht AR
    Nucleic Acids Res; 1981 Jul; 9(13):3105-17. PubMed ID: 7024910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell-selective metabolic labeling of proteins.
    Ngo JT; Champion JA; Mahdavi A; Tanrikulu IC; Beatty KE; Connor RE; Yoo TH; Dieterich DC; Schuman EM; Tirrell DA
    Nat Chem Biol; 2009 Oct; 5(10):715-7. PubMed ID: 19668194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methionyl-tRNA synthetase from Escherichia coli: substituting magnesium by manganese in the L-methionine activating reaction.
    Hyafil F; Blanquet S
    Eur J Biochem; 1977 Apr; 74(3):481-93. PubMed ID: 323013
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two forms of methionyl-transfer RNA synthetase from Mycobacterium smegmatis.
    Deobagkar DN; Gopinathan KP
    Biochem Biophys Res Commun; 1976 Aug; 71(4):939-51. PubMed ID: 971320
    [No Abstract]   [Full Text] [Related]  

  • 31. Methionyl-tRNA synthetase from Escherichia coli: primary structure at the binding site for the 3'-end of tRNAfMet.
    Hountondji C; Blanquet S; Lederer F
    Biochemistry; 1985 Feb; 24(5):1175-80. PubMed ID: 3913464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of aminoacylation of transfer RNA. A pre-steady-state analysis of the reaction pathway catalyzed by the methionyl-tRNA synthetase of Bacillus stearothermophilus.
    Mulvey RS; Fersht AR
    Biochemistry; 1978 Dec; 17(26):5591-7. PubMed ID: 728419
    [No Abstract]   [Full Text] [Related]  

  • 33. RNA overproducing revertants of an alanyl-tRNA synthetase mutant of Escherichia coli.
    Buckel P; Ruffler D; Piepersberg W; Böck A
    Mol Gen Genet; 1972; 119(4):323-35. PubMed ID: 4567806
    [No Abstract]   [Full Text] [Related]  

  • 34. Alteration of the kinetic parameters for aminoacylation of Escherichia coli formylmethionine transfer RNA by modification of an anticodon base.
    Schulman LH; Pelka H
    J Biol Chem; 1977 Feb; 252(3):814-9. PubMed ID: 14133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study of the interaction of Escherichia coli methionyl-tRNA synthetase with tRNAfMet using chemical and enzymatic probes.
    Pelka H; Schulman LH
    Biochemistry; 1986 Jul; 25(15):4450-6. PubMed ID: 3092857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Covalent coupling of the variable loop of the elongator methionine tRNA to a specific lysine residue in Escherichia coli methionyl-tRNA synthetase.
    Leon O; Schulman LO
    Biochemistry; 1987 Apr; 26(7):1933-40. PubMed ID: 3109475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Covalent coupling of 4-thiouridine in the initiator methionine tRNA to specific lysine residues in Escherichia coli methionyl-tRNA synthetase.
    Leon O; Schulman LH
    Biochemistry; 1987 Nov; 26(22):7113-21. PubMed ID: 3122828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Escherichia coli tyrosyl- and methionyl-tRNA synthetases display sequence similarity at the binding site for the 3'-end of tRNA.
    Hountondji C; Lederer F; Dessen P; Blanquet S
    Biochemistry; 1986 Jan; 25(1):16-21. PubMed ID: 3513822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methionyl-tRNA synthetase from Escherichia coli: active stoichiometry and stopped-flow analysis of methionyl adenylate formaiton.
    Hyafil F; Jacques Y; Fayat G; Fromant M; Dessen P; Blanquet S
    Biochemistry; 1976 Aug; 15(17):3678-85. PubMed ID: 182214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methionyl-tRNA synthetase of Escherichia coli. A zinc metalloprotein.
    Posorske LH; Cohn M; Yanagisawa N; Auld DS
    Biochim Biophys Acta; 1979 Jan; 576(1):128-33. PubMed ID: 367445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.