BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32349959)

  • 1. Using remote sensing to characterize riparian vegetation: A review of available tools and perspectives for managers.
    Huylenbroeck L; Laslier M; Dufour S; Georges B; Lejeune P; Michez A
    J Environ Manage; 2020 Aug; 267():110652. PubMed ID: 32349959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote-sensing Based Assessment of Long-term Riparian Vegetation Health in Proximity to Agricultural Lands with Herbicide Use History.
    Yousef F; Gebremichael M; Ghebremichael L; Perine J
    Integr Environ Assess Manag; 2019 Jul; 15(4):528-543. PubMed ID: 30900801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system.
    Michez A; Piégay H; Lisein J; Claessens H; Lejeune P
    Environ Monit Assess; 2016 Mar; 188(3):146. PubMed ID: 26850712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote sensing depicts riparian vegetation responses to water stress in a humid Atlantic region.
    Pace G; Gutiérrez-Cánovas C; Henriques R; Boeing F; Cássio F; Pascoal C
    Sci Total Environ; 2021 Jun; 772():145526. PubMed ID: 33581545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and monitoring riparian buffer zones using LiDAR data in South Carolina.
    Akturk E; Post C; Mikhailova EA
    Environ Monit Assess; 2020 May; 192(6):350. PubMed ID: 32388638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.
    Gillan JK; Karl JW; Duniway M; Elaksher A
    J Environ Manage; 2014 Nov; 144():226-35. PubMed ID: 24973611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracing the scientific trajectory of riparian vegetation studies: Main topics, approaches and needs in a globally changing world.
    Dufour S; Rodríguez-González PM; Laslier M
    Sci Total Environ; 2019 Feb; 653():1168-1185. PubMed ID: 30759557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel index for assessment of riparian strip efficiency in agricultural landscapes using high spatial resolution satellite imagery.
    Novoa J; Chokmani K; Lhissou R
    Sci Total Environ; 2018 Dec; 644():1439-1451. PubMed ID: 30743856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating nitrogen removal by vegetation uptake using satellite image time series in riparian catchments.
    Wang X; Wang Q; Yang S; Zheng D; Wu C; Mannaerts CM
    Sci Total Environ; 2011 Jun; 409(13):2567-76. PubMed ID: 21496878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interannual variation in riparian vegetation cover and its relationship with river flow under a high level of human intervention: an example from the Yongding River Basin.
    Ren L; Zhang S; Guo X; Cheng L; Guo Y; Ding A
    Environ Monit Assess; 2021 Jun; 193(7):406. PubMed ID: 34110515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving representation of riparian vegetation shading in a regional stream temperature model using LiDAR data.
    Loicq P; Moatar F; Jullian Y; Dugdale SJ; Hannah DM
    Sci Total Environ; 2018 May; 624():480-490. PubMed ID: 29268220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Submerged macrophyte assessment in rivers: An automatic mapping method using Pléiades imagery.
    Espel D; Courty S; Auda Y; Sheeren D; Elger A
    Water Res; 2020 Nov; 186():116353. PubMed ID: 32919140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
    Maynard JJ; Karl JW
    PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Riparian vegetation as an indicator of riparian condition: Detecting departures from historic condition across the North American West.
    Macfarlane WW; Gilbert JT; Jensen ML; Gilbert JD; Hough-Snee N; McHugh PA; Wheaton JM; Bennett SN
    J Environ Manage; 2017 Nov; 202(Pt 2):447-460. PubMed ID: 27839846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecology.].
    Sun ZY; Chen YQ; Yang L; Tang GL; Yuan SX; Lin ZW
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):528-536. PubMed ID: 29749161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-temporal monitoring of a regional riparian buffer network (>12,000 km) with LiDAR and photogrammetric point clouds.
    Michez A; Piégay H; Lejeune P; Claessens H
    J Environ Manage; 2017 Nov; 202(Pt 2):424-436. PubMed ID: 28242116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Riverscape approaches in practice: perspectives and applications.
    Torgersen CE; Le Pichon C; Fullerton AH; Dugdale SJ; Duda JJ; Giovannini F; Tales É; Belliard J; Branco P; Bergeron NE; Roy ML; Tonolla D; Lamouroux N; Capra H; Baxter CV
    Biol Rev Camb Philos Soc; 2022 Apr; 97(2):481-504. PubMed ID: 34758515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term monitoring for conservation management: Lessons from a case study integrating remote sensing and field approaches in floodplain forests.
    Rodríguez-González PM; Albuquerque A; Martínez-Almarza M; Díaz-Delgado R
    J Environ Manage; 2017 Nov; 202(Pt 2):392-402. PubMed ID: 28190693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Remote Sensing Data for Locust Research and Management-A Review.
    Klein I; Oppelt N; Kuenzer C
    Insects; 2021 Mar; 12(3):. PubMed ID: 33803360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.