BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32350274)

  • 1. In-situ resonant band engineering of solution-processed semiconductors generates high performance n-type thermoelectric nano-inks.
    Sahu A; Russ B; Liu M; Yang F; Zaia EW; Gordon MP; Forster JD; Zhang YQ; Scott MC; Persson KA; Coates NE; Segalman RA; Urban JJ
    Nat Commun; 2020 Apr; 11(1):2069. PubMed ID: 32350274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks.
    Ortega S; Ibáñez M; Liu Y; Zhang Y; Kovalenko MV; Cadavid D; Cabot A
    Chem Soc Rev; 2017 Jun; 46(12):3510-3528. PubMed ID: 28470243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Thermoelectric Performance in n-Type Perylene Bisimide Induced by the Soret Effect.
    Jiang Q; Sun H; Zhao D; Zhang F; Hu D; Jiao F; Qin L; Linseis V; Fabiano S; Crispin X; Ma Y; Cao Y
    Adv Mater; 2020 Nov; 32(45):e2002752. PubMed ID: 32924214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence.
    Tan G; Shi F; Hao S; Chi H; Zhao LD; Uher C; Wolverton C; Dravid VP; Kanatzidis MG
    J Am Chem Soc; 2015 Apr; 137(15):5100-12. PubMed ID: 25856499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoelectric performance of nanostructured In/Pb codoped SnTe with band convergence and resonant level prepared via a green and facile hydrothermal method.
    Lu W; He T; Li S; Zuo X; Zheng Y; Lou X; Zhang J; Li D; Liu J; Tang G
    Nanoscale; 2020 Mar; 12(10):5857-5865. PubMed ID: 32101245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering efficient thermoelectrics from large-scale assemblies of doped ZnO nanowires: nanoscale effects and resonant-level scattering.
    Brockway L; Vasiraju V; Sunkara MK; Vaddiraju S
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14923-30. PubMed ID: 25110937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties.
    Zhang G; Kirk B; Jauregui LA; Yang H; Xu X; Chen YP; Wu Y
    Nano Lett; 2012 Jan; 12(1):56-60. PubMed ID: 22111899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling Electronic States of Few-walled Carbon Nanotube Yarn via Joule-annealing and p-type Doping Towards Large Thermoelectric Power Factor.
    Myint MTZ; Nishikawa T; Omoto K; Inoue H; Yamashita Y; Kyaw AKK; Hayashi Y
    Sci Rep; 2020 Apr; 10(1):7307. PubMed ID: 32350391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances and Prospects of Small Molecular Organic Thermoelectric Materials.
    Zhou D; Zhang H; Zheng H; Xu Z; Xu H; Guo H; Li P; Tong Y; Hu B; Chen L
    Small; 2022 Jun; 18(23):e2200679. PubMed ID: 35285160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach.
    Tan G; Zhao LD; Shi F; Doak JW; Lo SH; Sun H; Wolverton C; Dravid VP; Uher C; Kanatzidis MG
    J Am Chem Soc; 2014 May; 136(19):7006-17. PubMed ID: 24785377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.
    Mun H; Choi SM; Lee KH; Kim SW
    ChemSusChem; 2015 Jul; 8(14):2312-26. PubMed ID: 25782971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution-processed organic thermoelectric materials exhibiting doping-concentration-dependent polarity.
    Hwang S; Potscavage WJ; Yang YS; Park IS; Matsushima T; Adachi C
    Phys Chem Chem Phys; 2016 Oct; 18(42):29199-29207. PubMed ID: 27731459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishing the Golden Range of Seebeck Coefficient for Maximizing Thermoelectric Performance.
    Hong M; Lyu W; Wang Y; Zou J; Chen ZG
    J Am Chem Soc; 2020 Feb; 142(5):2672-2681. PubMed ID: 31940193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer-Inorganic Thermoelectric Nanomaterials: Electrical Properties, Interfacial Chemistry Engineering, and Devices.
    Zhang X; Pan S; Song H; Guo W; Zhao S; Chen G; Zhang Q; Jin H; Zhang L; Chen Y; Wang S
    Front Chem; 2021; 9():677821. PubMed ID: 33981678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Type of Thermoelectric CdSSe Nanowire Chip.
    Ding C; Lu T; Wazir N; Ma W; Guo S; Xin Y; Li A; Liu R; Zou B
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30959-30966. PubMed ID: 34164987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon nanowires as efficient thermoelectric materials.
    Boukai AI; Bunimovich Y; Tahir-Kheli J; Yu JK; Goddard WA; Heath JR
    Nature; 2008 Jan; 451(7175):168-71. PubMed ID: 18185583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance flexible thermoelectric modules based on high crystal quality printed TiS
    Jacob S; Delatouche B; Péré D; Ullah Khan Z; Ledoux MJ; Crispin X; Chmielowski R
    Sci Technol Adv Mater; 2021; 22(1):907-916. PubMed ID: 34867084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property.
    Fukumaru T; Fujigaya T; Nakashima N
    Sci Rep; 2015 Jan; 5():7951. PubMed ID: 25608478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Type Bismuth Telluride Nanocomposite Materials Optimization for Thermoelectric Generators in Wearable Applications.
    Nozariasbmarz A; Krasinski JS; Vashaee D
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.