These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 32350276)
21. Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance. Li Z; Ding J; Mitlin D Acc Chem Res; 2015 Jun; 48(6):1657-65. PubMed ID: 26046961 [TBL] [Abstract][Full Text] [Related]
22. An Electrolyte for Reversible Cycling of Sodium Metal and Intercalation Compounds. Schafzahl L; Hanzu I; Wilkening M; Freunberger SA ChemSusChem; 2017 Jan; 10(2):401-408. PubMed ID: 27860417 [TBL] [Abstract][Full Text] [Related]
23. Highly Efficient, Cost Effective, and Safe Sodiation Agent for High-Performance Sodium-Ion Batteries. Shanmukaraj D; Kretschmer K; Sahu T; Bao W; Rojo T; Wang G; Armand M ChemSusChem; 2018 Sep; 11(18):3286-3291. PubMed ID: 29968282 [TBL] [Abstract][Full Text] [Related]
24. Bipolymer-Cross-Linked Binder to Improve the Reversibility and Kinetics of Sodiation and Desodiation of Antimony for Sodium-Ion Batteries. Kim D; Hwang C; Jeong J; Song WJ; Park S; Song HK ACS Appl Mater Interfaces; 2019 Nov; 11(46):43039-43045. PubMed ID: 31621283 [TBL] [Abstract][Full Text] [Related]
25. Self-Formulated Na-Based Dual-Ion Battery Using Nonflammable SO Kim A; Jung H; Song J; Lee J; Jeong G; Kim YJ; Kim H Small; 2021 Mar; 17(9):e1902144. PubMed ID: 31441193 [TBL] [Abstract][Full Text] [Related]
26. Imaging Sodium Dendrite Growth in All-Solid-State Sodium Batteries Using Rees GJ; Spencer Jolly D; Ning Z; Marrow TJ; Pavlovskaya GE; Bruce PG Angew Chem Int Ed Engl; 2021 Jan; 60(4):2110-2115. PubMed ID: 33022833 [TBL] [Abstract][Full Text] [Related]
27. Imaging Sodium Dendrite Growth in All-Solid-State Sodium Batteries Using Rees GJ; Spencer Jolly D; Ning Z; Marrow TJ; Pavlovskaya GE; Bruce PG Angew Chem Weinheim Bergstr Ger; 2021 Jan; 133(4):2138-2143. PubMed ID: 38504762 [TBL] [Abstract][Full Text] [Related]
28. Insights into the sodiation mechanism of hard carbon-like materials from electrochemical impedance spectroscopy. Schutjajew K; Tichter T; Schneider J; Antonietti M; Roth C; Oschatz M Phys Chem Chem Phys; 2021 May; 23(19):11488-11500. PubMed ID: 33959733 [TBL] [Abstract][Full Text] [Related]
29. In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. Liu Y; Fan F; Wang J; Liu Y; Chen H; Jungjohann KL; Xu Y; Zhu Y; Bigio D; Zhu T; Wang C Nano Lett; 2014 Jun; 14(6):3445-52. PubMed ID: 24823874 [TBL] [Abstract][Full Text] [Related]
31. Visualizing the growth process of sodium microstructures in sodium batteries by in-situ Xiang Y; Zheng G; Liang Z; Jin Y; Liu X; Chen S; Zhou K; Zhu J; Lin M; He H; Wan J; Yu S; Zhong G; Fu R; Li Y; Yang Y Nat Nanotechnol; 2020 Oct; 15(10):883-890. PubMed ID: 32719493 [TBL] [Abstract][Full Text] [Related]
32. Understanding the Electrochemical Compatibility and Reaction Mechanism on Na Metal and Hard Carbon Anodes of PC-Based Electrolytes for Sodium-Ion Batteries. Pan K; Lu H; Zhong F; Ai X; Yang H; Cao Y ACS Appl Mater Interfaces; 2018 Nov; 10(46):39651-39660. PubMed ID: 30358978 [TBL] [Abstract][Full Text] [Related]
33. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Wang JW; Liu XH; Mao SX; Huang JY Nano Lett; 2012 Nov; 12(11):5897-902. PubMed ID: 23092238 [TBL] [Abstract][Full Text] [Related]
34. Solvation behavior of carbonate-based electrolytes in sodium ion batteries. Cresce AV; Russell SM; Borodin O; Allen JA; Schroeder MA; Dai M; Peng J; Gobet MP; Greenbaum SG; Rogers RE; Xu K Phys Chem Chem Phys; 2016 Dec; 19(1):574-586. PubMed ID: 27918030 [TBL] [Abstract][Full Text] [Related]
36. Sodiation via heterogeneous disproportionation in FeF2 electrodes for sodium-ion batteries. He K; Zhou Y; Gao P; Wang L; Pereira N; Amatucci GG; Nam KW; Yang XQ; Zhu Y; Wang F; Su D ACS Nano; 2014 Jul; 8(7):7251-9. PubMed ID: 24911154 [TBL] [Abstract][Full Text] [Related]
37. Nanostructured Na Bhat SSM; Babu B; Feygenson M; Neuefeind JC; Shaijumon MM ACS Appl Mater Interfaces; 2018 Jan; 10(1):437-447. PubMed ID: 29244481 [TBL] [Abstract][Full Text] [Related]
38. 3D Porous Tin Created by Tuning the Redox Potential Acts as an Advanced Electrode for Sodium-Ion Batteries. Wang L; Ni Y; Lei K; Dong H; Tian S; Li F ChemSusChem; 2018 Oct; 11(19):3376-3381. PubMed ID: 30107074 [TBL] [Abstract][Full Text] [Related]
39. In Situ Atomic Force Microscopic Studies of Single Tin Nanoparticle: Sodiation and Desodiation in Liquid Electrolyte. Han M; Zhu C; Zhao Q; Chen C; Tao Z; Xie W; Cheng F; Chen J ACS Appl Mater Interfaces; 2017 Aug; 9(34):28620-28626. PubMed ID: 28809533 [TBL] [Abstract][Full Text] [Related]
40. Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. Xu GL; Chen Z; Zhong GM; Liu Y; Yang Y; Ma T; Ren Y; Zuo X; Wu XH; Zhang X; Amine K Nano Lett; 2016 Jun; 16(6):3955-65. PubMed ID: 27222911 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]