BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 32350277)

  • 1. Intron retention is a hallmark and spliceosome represents a therapeutic vulnerability in aggressive prostate cancer.
    Zhang D; Hu Q; Liu X; Ji Y; Chao HP; Liu Y; Tracz A; Kirk J; Buonamici S; Zhu P; Wang J; Liu S; Tang DG
    Nat Commun; 2020 Apr; 11(1):2089. PubMed ID: 32350277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dysregulation of the splicing machinery is directly associated to aggressiveness of prostate cancer.
    Jiménez-Vacas JM; Herrero-Aguayo V; Montero-Hidalgo AJ; Gómez-Gómez E; Fuentes-Fayos AC; León-González AJ; Sáez-Martínez P; Alors-Pérez E; Pedraza-Arévalo S; González-Serrano T; Reyes O; Martínez-López A; Sánchez-Sánchez R; Ventura S; Yubero-Serrano EM; Requena-Tapia MJ; Castaño JP; Gahete MD; Luque RM
    EBioMedicine; 2020 Jan; 51():102547. PubMed ID: 31902674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minor intron splicing is critical for survival of lethal prostate cancer.
    Augspach A; Drake KD; Roma L; Qian E; Lee SR; Clarke D; Kumar S; Jaquet M; Gallon J; Bolis M; Triscott J; Galván JA; Chen Y; Thalmann GN; Kruithof-de Julio M; Theurillat JP; Wuchty S; Gerstein M; Piscuoglio S; Kanadia RN; Rubin MA
    Mol Cell; 2023 Jun; 83(12):1983-2002.e11. PubMed ID: 37295433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The spliceosome as a new therapeutic vulnerability in aggressive prostate cancer.
    Zou C; Zhang D
    Mol Cell Oncol; 2020; 7(5):1778420. PubMed ID: 32944637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells.
    Anufrieva KS; Shender VО; Arapidi GP; Pavlyukov MS; Shakhparonov MI; Shnaider PV; Butenko IO; Lagarkova MA; Govorun VM
    Genome Med; 2018 Jun; 10(1):49. PubMed ID: 29950180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High expression of TROP2 characterizes different cell subpopulations in androgen-sensitive and androgen-independent prostate cancer cells.
    Xie J; Mølck C; Paquet-Fifield S; Butler L; ; Sloan E; Ventura S; Hollande F
    Oncotarget; 2016 Jul; 7(28):44492-44504. PubMed ID: 27283984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MiR-205-driven downregulation of cholesterol biosynthesis through SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate cancer.
    Kalogirou C; Linxweiler J; Schmucker P; Snaebjornsson MT; Schmitz W; Wach S; Krebs M; Hartmann E; Puhr M; Müller A; Spahn M; Seitz AK; Frank T; Marouf H; Büchel G; Eckstein M; Kübler H; Eilers M; Saar M; Junker K; Röhrig F; Kneitz B; Rosenfeldt MT; Schulze A
    Nat Commun; 2021 Aug; 12(1):5066. PubMed ID: 34417456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Splicing targeting drugs highlight intron retention as an actionable vulnerability in advanced prostate cancer.
    Naro C; Antonioni A; Medici V; Caggiano C; Jolly A; de la Grange P; Bielli P; Paronetto MP; Sette C
    J Exp Clin Cancer Res; 2024 Feb; 43(1):58. PubMed ID: 38413979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ailanthone targets p23 to overcome MDV3100 resistance in castration-resistant prostate cancer.
    He Y; Peng S; Wang J; Chen H; Cong X; Chen A; Hu M; Qin M; Wu H; Gao S; Wang L; Wang X; Yi Z; Liu M
    Nat Commun; 2016 Dec; 7():13122. PubMed ID: 27959342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer.
    Jiménez-Vacas JM; Herrero-Aguayo V; Gómez-Gómez E; León-González AJ; Sáez-Martínez P; Alors-Pérez E; Fuentes-Fayos AC; Martínez-López A; Sánchez-Sánchez R; González-Serrano T; López-Ruiz DJ; Requena-Tapia MJ; Castaño JP; Gahete MD; Luque RM
    Transl Res; 2019 Oct; 212():89-103. PubMed ID: 31344348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SF3B2-Mediated RNA Splicing Drives Human Prostate Cancer Progression.
    Kawamura N; Nimura K; Saga K; Ishibashi A; Kitamura K; Nagano H; Yoshikawa Y; Ishida K; Nonomura N; Arisawa M; Luo J; Kaneda Y
    Cancer Res; 2019 Oct; 79(20):5204-5217. PubMed ID: 31431456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor suppressor role of RBM22 in prostate cancer acting as a dual-factor regulating alternative splicing and transcription of key oncogenic genes.
    Jiménez-Vacas JM; Montero-Hidalgo AJ; Gómez-Gómez E; Sáez-Martínez P; Fuentes-Fayos AC; Closa A; González-Serrano T; Martínez-López A; Sánchez-Sánchez R; López-Casas PP; Sarmento-Cabral A; Olmos D; Eyras E; Castaño JP; Gahete MD; Luque RM
    Transl Res; 2023 Mar; 253():68-79. PubMed ID: 36089245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infiltrating mast cells enhance prostate cancer invasion via altering LncRNA-HOTAIR/PRC2-androgen receptor (AR)-MMP9 signals and increased stem/progenitor cell population.
    Li L; Dang Q; Xie H; Yang Z; He D; Liang L; Song W; Yeh S; Chang C
    Oncotarget; 2015 Jun; 6(16):14179-90. PubMed ID: 25895025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfiredoxin as a Potential Therapeutic Target for Advanced and Metastatic Prostate Cancer.
    Barquilha CN; Santos NJ; Monção CCD; Barbosa IC; Lima FO; Justulin LA; Pértega-Gomes N; Felisbino SL
    Oxid Med Cell Longev; 2020; 2020():2148562. PubMed ID: 32411320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer-associated fibroblasts promote prostate tumor growth and progression through upregulation of cholesterol and steroid biosynthesis.
    Neuwirt H; Bouchal J; Kharaishvili G; Ploner C; Jöhrer K; Pitterl F; Weber A; Klocker H; Eder IE
    Cell Commun Signal; 2020 Jan; 18(1):11. PubMed ID: 31980029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting Prostate Cancer Subtype 1 by Forkhead Box M1 Pathway Inhibition.
    Ketola K; Munuganti RSN; Davies A; Nip KM; Bishop JL; Zoubeidi A
    Clin Cancer Res; 2017 Nov; 23(22):6923-6933. PubMed ID: 28899970
    [No Abstract]   [Full Text] [Related]  

  • 17. The regulatory pathways leading to stem-like cells underlie prostate cancer progression.
    Lin CJ; Lo UG; Hsieh JT
    Asian J Androl; 2019; 21(3):233-240. PubMed ID: 30178777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifocal Signal Modulation Therapy by Celecoxib: A Strategy for Managing Castration-Resistant Prostate Cancer.
    Benelli R; Barboro P; Costa D; Astigiano S; Barbieri O; Capaia M; Poggi A; Ferrari N
    Int J Mol Sci; 2019 Dec; 20(23):. PubMed ID: 31816863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of ABHD5 promotes the aggressiveness of prostate cancer cells.
    Chen G; Zhou G; Aras S; He Z; Lucas S; Podgorski I; Skar W; Granneman JG; Wang J
    Sci Rep; 2017 Oct; 7(1):13021. PubMed ID: 29026202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CIP2A is a candidate therapeutic target in clinically challenging prostate cancer cell populations.
    Khanna A; Rane JK; Kivinummi KK; Urbanucci A; Helenius MA; Tolonen TT; Saramäki OR; Latonen L; Manni V; Pimanda JE; Maitland NJ; Westermarck J; Visakorpi T
    Oncotarget; 2015 Aug; 6(23):19661-70. PubMed ID: 25965834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.