BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32350346)

  • 1. High-throughput, Label-Free Quantitative Proteomic Studies of the Anticancer Effects of Electrical Pulses with Turmeric Silver Nanoparticles: an in vitro Model Study.
    Mittal L; Camarillo IG; Varadarajan GS; Srinivasan H; Aryal UK; Sundararajan R
    Sci Rep; 2020 Apr; 10(1):7258. PubMed ID: 32350346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: A global proteomics study.
    Mittal L; Aryal UK; Camarillo IG; Raman V; Sundararajan R
    Bioelectrochemistry; 2020 Feb; 131():107350. PubMed ID: 31518962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative proteomic analysis of enhanced cellular effects of electrochemotherapy with Cisplatin in triple-negative breast cancer cells.
    Mittal L; Aryal UK; Camarillo IG; Ferreira RM; Sundararajan R
    Sci Rep; 2019 Sep; 9(1):13916. PubMed ID: 31558821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput, Label-free Proteomics Identifies Salient Proteins and Genes in MDA-MB-231 Cells Treated with Natural Neem-based Electrochemotherapy.
    Varadarajan G; Thulasidas JS; Giri P; Camarillo IG; Sundararajan R
    Appl Biochem Biotechnol; 2022 Jan; 194(1):148-166. PubMed ID: 34993768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic Analysis Reveals That an Extract of the Plant Lippia origanoides Suppresses Mitochondrial Metabolism in Triple-Negative Breast Cancer Cells.
    Raman V; Aryal UK; Hedrick V; Ferreira RM; Fuentes Lorenzo JL; Stashenko EE; Levy M; Levy MM; Camarillo IG
    J Proteome Res; 2018 Oct; 17(10):3370-3383. PubMed ID: 30185032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Antiproliferation Potency of Electrical Pulse-Mediated Metformin and Cisplatin Combination Therapy on MDA-MB-231 Cells.
    Sahu P; Camarillo IG; Sundararajan R
    Appl Biochem Biotechnol; 2022 Jan; 194(1):18-36. PubMed ID: 34741262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-microsecond pulsed curcumin for effective treatment of triple negative breast cancers.
    Mittal L; Raman V; Camarillo IG; Sundararajan R
    Biochem Biophys Res Commun; 2017 Sep; 491(4):1015-1020. PubMed ID: 28780353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of reactive oxygen species production in triple negative breast cancer cells treated with electric pulses and resveratrol.
    Giri P; Camarillo IG; Sundararajan R
    Explor Target Antitumor Ther; 2023; 4(1):42-56. PubMed ID: 36937321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cisplatin-based Electrochemotherapy Significantly Downregulates Key Heat Shock Proteins in MDA-MB-231-Human Triple-Negative Breast Cancer Cells.
    Sundararajan R; Giri P; Madhivanan S; Ramesh A; Kishore NK; Manjunatha M; Camarillo IG
    Appl Biochem Biotechnol; 2022 Jan; 194(1):517-528. PubMed ID: 34637110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhizoma Amorphophalli inhibits TNBC cell proliferation, migration, invasion and metastasis through the PI3K/Akt/mTOR pathway.
    Wu C; Qiu S; Liu P; Ge Y; Gao X
    J Ethnopharmacol; 2018 Jan; 211():89-100. PubMed ID: 28962890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential.
    Pelicano H; Zhang W; Liu J; Hammoudi N; Dai J; Xu RH; Pusztai L; Huang P
    Breast Cancer Res; 2014 Sep; 16(5):434. PubMed ID: 25209360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of mitochondrial apoptotic pathway in triple negative breast carcinoma cells by methylglyoxal via generation of reactive oxygen species.
    Roy A; Ahir M; Bhattacharya S; Parida PK; Adhikary A; Jana K; Ray M
    Mol Carcinog; 2017 Sep; 56(9):2086-2103. PubMed ID: 28418078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic investigation on bio-corona of Au, Ag and Fe nanoparticles for the discovery of triple negative breast cancer serum protein biomarkers.
    Del Pilar Chantada-Vázquez M; López AC; Vence MG; Vázquez-Estévez S; Acea-Nebril B; Calatayud DG; Jardiel T; Bravo SB; Núñez C
    J Proteomics; 2020 Feb; 212():103581. PubMed ID: 31731051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite.
    Liao WS; Ho Y; Lin YW; Naveen Raj E; Liu KK; Chen C; Zhou XZ; Lu KP; Chao JI
    Acta Biomater; 2019 Mar; 86():395-405. PubMed ID: 30660004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitro-fatty acid inhibition of triple-negative breast cancer cell viability, migration, invasion, and tumor growth.
    Woodcock CC; Huang Y; Woodcock SR; Salvatore SR; Singh B; Golin-Bisello F; Davidson NE; Neumann CA; Freeman BA; Wendell SG
    J Biol Chem; 2018 Jan; 293(4):1120-1137. PubMed ID: 29158255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid nanocarriers of a lipid-conjugated estrogenic derivative inhibit tumor growth and enhance cisplatin activity against triple-negative breast cancer: pharmacokinetic and efficacy evaluation.
    Andey T; Sudhakar G; Marepally S; Patel A; Banerjee R; Singh M
    Mol Pharm; 2015 Apr; 12(4):1105-20. PubMed ID: 25661724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of micellar-like terpolymer nanoparticles with reductively-cleavable cross-links and evaluation of efficacy in 2D and 3D models of triple negative breast cancer.
    Monteiro PF; Gulfam M; Monteiro CJ; Travanut A; Abelha TF; Pearce AK; Jerôme C; Grabowska AM; Clarke PA; Collins HM; Heery DM; Gershkovich P; Alexander C
    J Control Release; 2020 Jul; 323():549-564. PubMed ID: 32371266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined Photothermal and Ionizing Radiation Sensitization of Triple-Negative Breast Cancer Using Triangular Silver Nanoparticles.
    Sears J; Swanner J; Fahrenholtz CD; Snyder C; Rohde M; Levi-Polyachenko N; Singh R
    Int J Nanomedicine; 2021; 16():851-865. PubMed ID: 33574666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable shRNA Silencing of Lactate Dehydrogenase A (LDHA) in Human MDA-MB-231 Breast Cancer Cells Fails to Alter Lactic Acid Production, Glycolytic Activity, ATP or Survival.
    Mack N; Mazzio EA; Bauer D; Flores-Rozas H; Soliman KF
    Anticancer Res; 2017 Mar; 37(3):1205-1212. PubMed ID: 28314283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial adaptation decreases drug sensitivity of persistent triple negative breast cancer cells surviving combinatory and sequential chemotherapy.
    Winter M; Nait Eldjoudi A; Guette C; Hondermarck H; Bourette RP; Fovez Q; Laine W; Ghesquiere B; Adriaenssens E; Kluza J; Le Bourhis X
    Neoplasia; 2023 Dec; 46():100949. PubMed ID: 37956532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.