These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

710 related articles for article (PubMed ID: 32350510)

  • 1. From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases.
    Landmesser U; Poller W; Tsimikas S; Most P; Paneni F; Lüscher TF
    Eur Heart J; 2020 Oct; 41(40):3884-3899. PubMed ID: 32350510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in nucleic acid-targeted therapies for cardiovascular disease prevention.
    Makhmudova U; Steinhagen-Thiessen E; Volpe M; Landmesser U
    Cardiovasc Res; 2024 Sep; 120(10):1107-1125. PubMed ID: 38970537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liver as a target for oligonucleotide therapeutics.
    Sehgal A; Vaishnaw A; Fitzgerald K
    J Hepatol; 2013 Dec; 59(6):1354-9. PubMed ID: 23770039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Promise of PCSK9 and Lipoprotein(a) as Targets for Gene Silencing Therapies.
    Chan DC; Watts GF
    Clin Ther; 2023 Nov; 45(11):1034-1046. PubMed ID: 37524569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of RNA-Targeted Therapeutics to Reduce ASCVD Risk: What Have We Learned Recently?
    Miname MH; Rocha VZ; Santos RD
    Curr Atheroscler Rep; 2021 Jun; 23(8):40. PubMed ID: 34146170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drugs that Mimic the Effect of Gene Mutations for the Prevention or the Treatment of Atherosclerotic Disease: From PCSK9 Inhibition to ANGPTL3 Inactivation.
    Athyros VG; Katsiki N; Dimakopoulou A; Patoulias D; Alataki S; Doumas M
    Curr Pharm Des; 2018; 24(31):3638-3646. PubMed ID: 30306859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Management of Hypercholesterolemia, Appropriateness of Therapeutic Approaches and New Drugs in Patients with High Cardiovascular Risk.
    Agabiti Rosei E; Salvetti M
    High Blood Press Cardiovasc Prev; 2016 Sep; 23(3):217-30. PubMed ID: 27567901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New medications targeting triglyceride-rich lipoproteins: Can inhibition of ANGPTL3 or apoC-III reduce the residual cardiovascular risk?
    Olkkonen VM; Sinisalo J; Jauhiainen M
    Atherosclerosis; 2018 May; 272():27-32. PubMed ID: 29544086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCSK9 Monoclonal Antibodies: New Developments and Their Relevance in a Nucleic Acid-Based Therapy Era.
    Gouni-Berthold I; Schwarz J; Berthold HK
    Curr Atheroscler Rep; 2022 Oct; 24(10):779-790. PubMed ID: 35900635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proprotein convertase subtilisin/kexin type 9 inhibition: a new therapeutic mechanism for reducing cardiovascular disease risk.
    Bergeron N; Phan BA; Ding Y; Fong A; Krauss RM
    Circulation; 2015 Oct; 132(17):1648-66. PubMed ID: 26503748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model.
    Carreras A; Pane LS; Nitsch R; Madeyski-Bengtson K; Porritt M; Akcakaya P; Taheri-Ghahfarokhi A; Ericson E; Bjursell M; Perez-Alcazar M; Seeliger F; Althage M; Knöll R; Hicks R; Mayr LM; Perkins R; Lindén D; Borén J; Bohlooly-Y M; Maresca M
    BMC Biol; 2019 Jan; 17(1):4. PubMed ID: 30646909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibition and the Future of Lipid Lowering Therapy.
    Joseph L; Robinson JG
    Prog Cardiovasc Dis; 2015; 58(1):19-31. PubMed ID: 25936907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene editing for dyslipidemias: New tools to "cut" lipids.
    Stankov S; Cuchel M
    Atherosclerosis; 2023 Mar; 368():14-24. PubMed ID: 36725417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel strategies to target proprotein convertase subtilisin kexin 9: beyond monoclonal antibodies.
    Seidah NG; Prat A; Pirillo A; Catapano AL; Norata GD
    Cardiovasc Res; 2019 Mar; 115(3):510-518. PubMed ID: 30629143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New LDL-cholesterol lowering therapies: pharmacology, clinical trials, and relevance to acute coronary syndromes.
    Sahebkar A; Watts GF
    Clin Ther; 2013 Aug; 35(8):1082-98. PubMed ID: 23932550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel RNAi-Based Therapies for Atherosclerosis.
    Ruotsalainen AK; Mäkinen P; Ylä-Herttuala S
    Curr Atheroscler Rep; 2021 Jun; 23(8):45. PubMed ID: 34146172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol.
    Xu YX; Redon V; Yu H; Querbes W; Pirruccello J; Liebow A; Deik A; Trindade K; Wang X; Musunuru K; Clish CB; Cowan C; Fizgerald K; Rader D; Kathiresan S
    Atherosclerosis; 2018 Jan; 268():196-206. PubMed ID: 29183623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-density Lipoprotein-Cholesterol Lowering Strategies for Prevention of Atherosclerotic Cardiovascular Disease: Focus on siRNA Treatment Targeting PCSK9 (Inclisiran).
    Sinning D; Landmesser U
    Curr Cardiol Rep; 2020 Oct; 22(12):176. PubMed ID: 33089390
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Wagner J; Bell AS; Lohoff FW
    ACS Chem Neurosci; 2022 Dec; 13(23):3210-3212. PubMed ID: 36374568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New opportunities in the management and treatment of refractory hypercholesterolemia using in vivo CRISPR-mediated genome/base editing.
    Srivastava RAK
    Nutr Metab Cardiovasc Dis; 2023 Dec; 33(12):2317-2325. PubMed ID: 37805309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.