These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 32350617)
1. Degradation, wettability and surface characteristics of laser surface modified Mg-Zn-Gd-Nd alloy. K R R; Bontha S; M R R; Das M; Balla VK J Mater Sci Mater Med; 2020 Apr; 31(5):42. PubMed ID: 32350617 [TBL] [Abstract][Full Text] [Related]
2. Microstructure and corrosion behavior of laser surface-treated AZ31B Mg bio-implant material. Wu TC; Ho YH; Joshi SS; Rajamure RS; Dahotre NB Lasers Med Sci; 2017 May; 32(4):797-803. PubMed ID: 28251395 [TBL] [Abstract][Full Text] [Related]
3. Towards refining microstructures of biodegradable magnesium alloy WE43 by spark plasma sintering. Soderlind J; Cihova M; Schäublin R; Risbud S; Löffler JF Acta Biomater; 2019 Oct; 98():67-80. PubMed ID: 31254685 [TBL] [Abstract][Full Text] [Related]
4. Microstructure and corrosion properties of as sub-rapid solidification Mg-Zn-Y-Nd alloy in dynamic simulated body fluid for vascular stent application. Wang J; Wang L; Guan S; Zhu S; Ren C; Hou S J Mater Sci Mater Med; 2010 Jul; 21(7):2001-8. PubMed ID: 20352299 [TBL] [Abstract][Full Text] [Related]
6. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials. Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of laser-melted Mg-Sn-Zn alloys for biomedical application. Shuai C; Zhou Y; Lin X; Yang Y; Gao C; Shuai X; Wu H; Liu X; Wu P; Feng P J Mater Sci Mater Med; 2017 Jan; 28(1):13. PubMed ID: 27995491 [TBL] [Abstract][Full Text] [Related]
8. Structural characteristics and corrosion behavior of biodegradable Mg-Zn, Mg-Zn-Gd alloys. Kubásek J; Vojtěch D J Mater Sci Mater Med; 2013 Jul; 24(7):1615-26. PubMed ID: 23529291 [TBL] [Abstract][Full Text] [Related]
9. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials. Tong X; Zhang D; Zhang X; Su Y; Shi Z; Wang K; Lin J; Li Y; Lin J; Wen C Acta Biomater; 2018 Dec; 82():197-204. PubMed ID: 30316837 [TBL] [Abstract][Full Text] [Related]
10. Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications. Sikora-Jasinska M; Mostaed E; Mostaed A; Beanland R; Mantovani D; Vedani M Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1170-1181. PubMed ID: 28531993 [TBL] [Abstract][Full Text] [Related]
11. Optimization of biocompatibility in a laser surface treated Mg-AZ31B alloy. Lu JZ; Joshi SS; Pantawane MV; Ho YH; Wu TC; Dahotre NB Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110028. PubMed ID: 31546463 [TBL] [Abstract][Full Text] [Related]
12. Laser surface modification of AZ31B Mg alloy for bio-wettability. Ho YH; Vora HD; Dahotre NB J Biomater Appl; 2015 Feb; 29(7):915-28. PubMed ID: 25201909 [TBL] [Abstract][Full Text] [Related]
13. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications. Makkar P; Sarkar SK; Padalhin AR; Moon BG; Lee YS; Lee BT J Appl Biomater Funct Mater; 2018 Jul; 16(3):126-136. PubMed ID: 29607729 [TBL] [Abstract][Full Text] [Related]
14. Microstructural evolution and corrosion behavior of a laser surface modified cast Co-Cr-Mo-C alloy. Erfanian-Nazif-Toosi HR; Rodriguez M; López HF J Biomed Mater Res B Appl Biomater; 2020 Nov; 108(8):3190-3199. PubMed ID: 32619316 [TBL] [Abstract][Full Text] [Related]
15. Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure. Bornapour M; Celikin M; Pekguleryuz M Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():16-24. PubMed ID: 25491955 [TBL] [Abstract][Full Text] [Related]
16. Understanding corrosion behavior of Mg-Zn-Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation. Jang Y; Tan Z; Jurey C; Xu Z; Dong Z; Collins B; Yun Y; Sankar J Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():28-40. PubMed ID: 25579893 [TBL] [Abstract][Full Text] [Related]
17. Surface characterization and cytotoxicity response of biodegradable magnesium alloys. Pompa L; Rahman ZU; Munoz E; Haider W Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():761-768. PubMed ID: 25687006 [TBL] [Abstract][Full Text] [Related]
18. Modified Biodegradation Behavior Induced Beneficial Microenvironments for Bone Regeneration by Low Addition of Gadolinium in Zinc. Yang H; Jia B; Qu X; Dai K; Zheng Y Adv Healthc Mater; 2022 Nov; 11(21):e2201184. PubMed ID: 35950991 [TBL] [Abstract][Full Text] [Related]
19. Role of biomineralization on the degradation of fine grained AZ31 magnesium alloy processed by groove pressing. Sunil BR; Kumar AA; Sampath Kumar TS; Chakkingal U Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1607-15. PubMed ID: 23827614 [TBL] [Abstract][Full Text] [Related]
20. Laser surface modification of 316L stainless steel. Balla VK; Dey S; Muthuchamy AA; Janaki Ram GD; Das M; Bandyopadhyay A J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):569-577. PubMed ID: 28245086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]