These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 32350696)
21. Production of microsclerotia by Brazilian strains of Metarhizium spp. using submerged liquid culture fermentation. Mascarin GM; Kobori NN; de Jesus Vital RC; Jackson MA; Quintela ED World J Microbiol Biotechnol; 2014 May; 30(5):1583-90. PubMed ID: 24343780 [TBL] [Abstract][Full Text] [Related]
24. Combined use of the entomopathogenic fungus, Metarhizium brunneum, and the mosquito predator, Toxorhynchites brevipalpis, for control of mosquito larvae: Is this a risky biocontrol strategy? Alkhaibari AM; Maffeis T; Bull JC; Butt TM J Invertebr Pathol; 2018 Mar; 153():38-50. PubMed ID: 29425967 [TBL] [Abstract][Full Text] [Related]
25. Impact of osmotic stress on production, morphology, and fitness of Beauveria bassiana blastospores. Mascarin GM; Kobori NN; Coleman JJ; Jackson MA Appl Microbiol Biotechnol; 2023 Aug; 107(15):4815-4831. PubMed ID: 37358812 [TBL] [Abstract][Full Text] [Related]
26. First report on the natural occurrence of entomopathogenic fungi in populations of the leafhopper Dalbulus maidis (Hemiptera: Cicadellidae): Pathogen identifications and their incidence in maize crops. Souza DA; Oliveira CM; Tamai MA; Faria M; Lopes RB Fungal Biol; 2021 Dec; 125(12):980-988. PubMed ID: 34776235 [TBL] [Abstract][Full Text] [Related]
27. Pathogenicity of microsclerotia from Metarhizium robertsii against Aedes aegypti larvae and antimicrobial peptides expression by mosquitoes during fungal-host interaction. Paixão FRS; Falvo ML; Huarte-Bonnet C; Santana M; García JJ; Fernandes ÉKK; Pedrini N Acta Trop; 2024 Jan; 249():107061. PubMed ID: 37918505 [TBL] [Abstract][Full Text] [Related]
28. Effects of successive subculturing on stability, virulence, conidial yield, germination and shelf-life of entomopathogenic fungi. Ansari MA; Butt TM J Appl Microbiol; 2011 Jun; 110(6):1460-9. PubMed ID: 21395946 [TBL] [Abstract][Full Text] [Related]
29. Mr-AbaA Regulates Conidiation by Interacting with the Promoter Regions of Both Wu H; Tong Y; Zhou R; Wang Y; Wang Z; Ding T; Huang B Microbiol Spectr; 2021 Oct; 9(2):e0082321. PubMed ID: 34494863 [TBL] [Abstract][Full Text] [Related]
30. Production of Conidia by the Fungus Metarhizium anisopliae Using Solid-State Fermentation. Loera-Corral O; Porcayo-Loza J; Montesinos-Matias R; Favela-Torres E Methods Mol Biol; 2016; 1477():61-9. PubMed ID: 27565492 [TBL] [Abstract][Full Text] [Related]
31. Culture of Metarhizium robertsii on salicylic-acid supplemented medium induces increased conidial thermotolerance. Rangel DE; Fernandes ÉK; Anderson AJ; Roberts DW Fungal Biol; 2012 Mar; 116(3):438-42. PubMed ID: 22385625 [TBL] [Abstract][Full Text] [Related]
32. Pathogenicity of fungal isolates (Ascomycota: Hypocreales) against Peregrinus maidis, Delphacodes kuscheli (Hemiptera: Delphacidae), and Dalbulus maidis (Hemiptera: Cicadellidae), vectors of corn diseases. Toledo AV; de Remes Lenicov AM; López Lastra CC Mycopathologia; 2007 Apr; 163(4):225-32. PubMed ID: 17407003 [TBL] [Abstract][Full Text] [Related]
33. Comparative RNAseq Analysis of the Insect-Pathogenic Fungus Iwanicki NS; Júnior ID; Eilenberg J; De Fine Licht HH G3 (Bethesda); 2020 Jul; 10(7):2141-2157. PubMed ID: 32354703 [TBL] [Abstract][Full Text] [Related]
35. Differential Pathogenicity of Metarhizium Blastospores and Conidia Against Larvae of Three Mosquito Species. Alkhaibari AM; Carolino AT; Bull JC; Samuels RI; Butt TM J Med Entomol; 2017 May; 54(3):696-704. PubMed ID: 28399202 [TBL] [Abstract][Full Text] [Related]
36. An oil-based formulation of Isaria fumosorosea blastospores for management of greenhouse whitefly Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Kim JS; Je YH; Skinner M; Parker BL Pest Manag Sci; 2013 May; 69(5):576-81. PubMed ID: 23536463 [TBL] [Abstract][Full Text] [Related]
37. Blastospores from Gotti IA; Moreira CC; Delalibera I; De Fine Licht HH Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375096 [TBL] [Abstract][Full Text] [Related]
38. Microsclerotial pellets of Metarhizium spp.: thermotolerance and bioefficacy against the cattle tick. da Paixão FRS; Muniz ER; Catão AML; Santos TR; Luz C; Marreto RN; Mascarin GM; Fernandes ÉKK Appl Microbiol Biotechnol; 2023 Apr; 107(7-8):2263-2275. PubMed ID: 36929189 [TBL] [Abstract][Full Text] [Related]
39. Endophytic Metarhizium robertsii suppresses the phytopathogen, Cochliobolus heterostrophus and modulates maize defenses. Ahmad I; Jiménez-Gasco MDM; Luthe DS; Barbercheck ME PLoS One; 2022; 17(9):e0272944. PubMed ID: 36137142 [TBL] [Abstract][Full Text] [Related]
40. Efficacy of entomopathogenic fungi against Philaenus spumarius, the vector of Xylella fastidosa. Ganassi S; Di Domenico C; Altomare C; Grazioso P; Di Cillo P; Pietrantonio L; De Cristofaro A Pest Manag Sci; 2024 Sep; 80(9):4585-4593. PubMed ID: 38769855 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]