These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 32350696)
41. Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii. Duan Z; Chen Y; Huang W; Shang Y; Chen P; Wang C Autophagy; 2013 Apr; 9(4):538-49. PubMed ID: 23380892 [TBL] [Abstract][Full Text] [Related]
42. Impact of carbon and nitrogen nutrition on the quality, yield and composition of blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Cliquet S; Jackson MA J Ind Microbiol Biotechnol; 2005 May; 32(5):204-10. PubMed ID: 15887035 [TBL] [Abstract][Full Text] [Related]
44. Serendipity in the wrestle between Trichoderma and Metarhizium. Medina EQA; Oliveira AS; Medina HR; Rangel DEN Fungal Biol; 2020 May; 124(5):418-426. PubMed ID: 32389304 [TBL] [Abstract][Full Text] [Related]
45. Principal component analysis of the biological characteristics of entomopathogenic fungi in nutrient-limited and cuticle-based media. Montesinos-Matías R; Ordaz-Hernández A; Angel-Cuapio A; Colin-Bonifacio Y; Garcia-Garcia RE; Ángel-Sahagún CA; Arredondo-Bernal HC J Basic Microbiol; 2021 Feb; 61(2):147-156. PubMed ID: 33448045 [TBL] [Abstract][Full Text] [Related]
46. Observations on the Relationships between Endophytic Flonc B; Barbercheck M; Ahmad I Pathogens; 2021 Jun; 10(6):. PubMed ID: 34200234 [TBL] [Abstract][Full Text] [Related]
47. Dicer and Argonaute Genes Involved in RNA Interference in the Entomopathogenic Fungus Metarhizium robertsii. Meng H; Wang Z; Wang Y; Zhu H; Huang B Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130299 [TBL] [Abstract][Full Text] [Related]
48. Eight Decades of Dalbulus maidis (DeLong & Wolcott) (Hemiptera, Cicadellidae) in Brazil: What We Know and What We Need to Know. Oliveira CM; Frizzas MR Neotrop Entomol; 2022 Feb; 51(1):1-17. PubMed ID: 34878633 [TBL] [Abstract][Full Text] [Related]
49. Algorithm-based design of synthetic growth media stimulating virulence properties of Metarhizium anisopliae conidia. Hutwimmer S; Wagner S; Affenzeller M; Burgstaller W; Strasser H J Appl Microbiol; 2008 Dec; 105(6):2026-34. PubMed ID: 18713285 [TBL] [Abstract][Full Text] [Related]
50. Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. Rangel DE; Fernandes EK; Braga GU; Roberts DW FEMS Microbiol Lett; 2011 Feb; 315(2):81-6. PubMed ID: 21204917 [TBL] [Abstract][Full Text] [Related]
51. MrArk1, an actin-regulating kinase gene, is required for endocytosis and involved in sustaining conidiation capacity and virulence in Metarhizium robertsii. Wang Z; Jiang Y; Li Y; Feng J; Huang B Appl Microbiol Biotechnol; 2019 Jun; 103(12):4859-4868. PubMed ID: 31025075 [TBL] [Abstract][Full Text] [Related]
52. [Production of infectious units of Isaria fumosorosea (Hypocreales: Cordycipitaceae) from different indigenous isolates of northeastern Mexico using 3 propagation strategies]. Gandarilla-Pacheco FL; Morales-Ramos LH; Pereyra-Alférez B; Elías-Santos M; Quintero-Zapata I Rev Argent Microbiol; 2018; 50(1):81-89. PubMed ID: 28967446 [TBL] [Abstract][Full Text] [Related]
53. MripacC regulates blastosphere budding and influences virulence of the pathogenic fungus Metarhizium rileyi. Li R; Wang J; Yin Y; Deng C; Yang K; Wang Z Fungal Biol; 2021 Aug; 125(8):596-608. PubMed ID: 34281653 [TBL] [Abstract][Full Text] [Related]
54. Metarhizium robertsii illuminated during mycelial growth produces conidia with increased germination speed and virulence. Oliveira AS; Braga GUL; Rangel DEN Fungal Biol; 2018 Jun; 122(6):555-562. PubMed ID: 29801800 [TBL] [Abstract][Full Text] [Related]
55. Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani. Kobori NN; Mascarin GM; Jackson MA; Schisler DA Fungal Biol; 2015 Apr; 119(4):179-90. PubMed ID: 25813507 [TBL] [Abstract][Full Text] [Related]
56. Comparative transcriptomics of growth metabolism and virulence reveal distinct morphogenic profiles of yeast-like cells and hyphae of the fungus Metarhizium rileyi. Sant Anna Iwanicki N; Delalibera Júnior I; de Carvalho LLB; Eilenberg J; De Fine Licht HH Fungal Genet Biol; 2023 Jan; 164():103766. PubMed ID: 36513262 [TBL] [Abstract][Full Text] [Related]
57. Temporal resource continuity for egg parasitoids of Dalbulus maidis (Hemiptera: Cicadellidae) during winter on irrigated maize crops and edge grasses. Moya-Raygoza G J Insect Sci; 2024 Jul; 24(4):. PubMed ID: 39149910 [TBL] [Abstract][Full Text] [Related]
58. Virulence of Some Entomopathogenic Fungi Isolates of Beauveria bassiana (Hypocreales: Cordycipitaceae) and Metarhizium anisopliae (Hypocreales: Clavicipitaceae) to Aulacaspis tubercularis (Hemiptera: Diaspididae)and Icerya seychellarum (Hemiptera: Monophlebidae) on Mango Crop. Sayed AMM; Dunlap CA J Econ Entomol; 2019 Dec; 112(6):2584-2596. PubMed ID: 31329233 [TBL] [Abstract][Full Text] [Related]
59. The polyubiquitin gene Wang Z; Zhu H; Cheng Y; Jiang Y; Li Y; Huang B Genes (Basel); 2019 May; 10(6):. PubMed ID: 31146457 [TBL] [Abstract][Full Text] [Related]
60. Did maize domestication and early spread mediate the population genetics of corn leafhopper? Bernal JS; Dávila-Flores AM; Medina RF; Chen YH; Harrison KE; Berrier KA Insect Sci; 2019 Jun; 26(3):569-586. PubMed ID: 29105309 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]