These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 32350891)

  • 1. Individual participant data meta-analysis to examine interactions between treatment effect and participant-level covariates: Statistical recommendations for conduct and planning.
    Riley RD; Debray TPA; Fisher D; Hattle M; Marlin N; Hoogland J; Gueyffier F; Staessen JA; Wang J; Moons KGM; Reitsma JB; Ensor J
    Stat Med; 2020 Jul; 39(15):2115-2137. PubMed ID: 32350891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-stage individual participant data meta-analysis models: estimation of treatment-covariate interactions must avoid ecological bias by separating out within-trial and across-trial information.
    Hua H; Burke DL; Crowther MJ; Ensor J; Tudur Smith C; Riley RD
    Stat Med; 2017 Feb; 36(5):772-789. PubMed ID: 27910122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculating the power to examine treatment-covariate interactions when planning an individual participant data meta-analysis of randomized trials with a binary outcome.
    Riley RD; Hattle M; Collins GS; Whittle R; Ensor J
    Stat Med; 2022 Oct; 41(24):4822-4837. PubMed ID: 35932153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual participant data meta-analysis to examine linear or non-linear treatment-covariate interactions at multiple time-points for a continuous outcome.
    Hattle M; Ensor J; Scandrett K; van Middelkoop M; van der Windt DA; Holden MA; Riley RD
    Res Synth Methods; 2024 Nov; 15(6):1001-1016. PubMed ID: 39284791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of multiple covariates in assessing treatment-effect modifiers: A methodological review of individual participant data meta-analyses.
    Godolphin PJ; Marlin N; Cornett C; Fisher DJ; Tierney JF; White IR; RogoziƄska E
    Res Synth Methods; 2024 Jan; 15(1):107-116. PubMed ID: 37771175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation-based power calculations for planning a two-stage individual participant data meta-analysis.
    Ensor J; Burke DL; Snell KIE; Hemming K; Riley RD
    BMC Med Res Methodol; 2018 May; 18(1):41. PubMed ID: 29776399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculating the power of a planned individual participant data meta-analysis of randomised trials to examine a treatment-covariate interaction with a time-to-event outcome.
    Riley RD; Collins GS; Hattle M; Whittle R; Ensor J
    Res Synth Methods; 2023 Sep; 14(5):718-730. PubMed ID: 37386750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical approaches to identify subgroups in meta-analysis of individual participant data: a simulation study.
    Belias M; Rovers MM; Reitsma JB; Debray TPA; IntHout J
    BMC Med Res Methodol; 2019 Sep; 19(1):183. PubMed ID: 31477023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Get real in individual participant data (IPD) meta-analysis: a review of the methodology.
    Debray TP; Moons KG; van Valkenhoef G; Efthimiou O; Hummel N; Groenwold RH; Reitsma JB;
    Res Synth Methods; 2015 Dec; 6(4):293-309. PubMed ID: 26287812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using individual participant data to improve network meta-analysis projects.
    Riley RD; Dias S; Donegan S; Tierney JF; Stewart LA; Efthimiou O; Phillippo DM
    BMJ Evid Based Med; 2023 Jun; 28(3):197-203. PubMed ID: 35948411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individual participant data meta-analysis of intervention studies with time-to-event outcomes: A review of the methodology and an applied example.
    de Jong VMT; Moons KGM; Riley RD; Tudur Smith C; Marson AG; Eijkemans MJC; Debray TPA
    Res Synth Methods; 2020 Mar; 11(2):148-168. PubMed ID: 31759339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meta-analysis of a continuous outcome combining individual patient data and aggregate data: a method based on simulated individual patient data.
    Yamaguchi Y; Sakamoto W; Goto M; Staessen JA; Wang J; Gueyffier F; Riley RD
    Res Synth Methods; 2014 Dec; 5(4):322-51. PubMed ID: 26052956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Introduction to Individual Participant Data Meta-analysis.
    Veroniki AA; Seitidis G; Tsivgoulis G; Katsanos AH; Mavridis D
    Neurology; 2023 Jun; 100(23):1102-1110. PubMed ID: 36797070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual Patient Data Meta-Analysis and Network Meta-Analysis.
    Freeman SC
    Methods Mol Biol; 2022; 2345():279-298. PubMed ID: 34550597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ.
    Burke DL; Ensor J; Riley RD
    Stat Med; 2017 Feb; 36(5):855-875. PubMed ID: 27747915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A framework for identifying treatment-covariate interactions in individual participant data network meta-analysis.
    Freeman SC; Fisher D; Tierney JF; Carpenter JR
    Res Synth Methods; 2018 Sep; 9(3):393-407. PubMed ID: 29737630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating interactions in individual participant data meta-analysis: a comparison of methods in practice.
    Walker R; Stewart L; Simmonds M
    Syst Rev; 2022 Oct; 11(1):211. PubMed ID: 36199096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A recursive partitioning approach for subgroup identification in individual patient data meta-analysis.
    Mistry D; Stallard N; Underwood M
    Stat Med; 2018 Apr; 37(9):1550-1561. PubMed ID: 29383818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meta-analysis of continuous outcomes combining individual patient data and aggregate data.
    Riley RD; Lambert PC; Staessen JA; Wang J; Gueyffier F; Thijs L; Boutitie F
    Stat Med; 2008 May; 27(11):1870-93. PubMed ID: 18069721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the consistency assumption by exploring treatment by covariate interactions in mixed treatment comparison meta-analysis: individual patient-level covariates versus aggregate trial-level covariates.
    Donegan S; Williamson P; D'Alessandro U; Tudur Smith C
    Stat Med; 2012 Dec; 31(29):3840-57. PubMed ID: 22786621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.