These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 32351112)
1. Biotransformation of Erythrodiol for New Food Supplements with Anti-Inflammatory Properties. Shen P; Wang W; Xu S; Du Z; Wang W; Yu B; Zhang J J Agric Food Chem; 2020 May; 68(21):5910-5916. PubMed ID: 32351112 [TBL] [Abstract][Full Text] [Related]
2. Derivatization of Soyasapogenol A through Microbial Transformation for Potential Anti-inflammatory Food Supplements. Zhou X; Shen P; Wang W; Zhou J; Raj R; Du Z; Xu S; Wang W; Yu B; Zhang J J Agric Food Chem; 2021 Jun; 69(24):6791-6798. PubMed ID: 34101468 [TBL] [Abstract][Full Text] [Related]
3. Microbial transformation of pentacyclic triterpenes for anti-inflammatory agents on the HMGB1 stimulated RAW 264.7 cells by Streptomyces olivaceus CICC 23628. Zhu Y; Shen P; Wang J; Jiang X; Wang W; Raj R; Ge H; Wang W; Yu B; Zhang J Bioorg Med Chem; 2021 Dec; 52():116494. PubMed ID: 34800877 [TBL] [Abstract][Full Text] [Related]
4. Microbial transformation and inhibitory effect assessment of uvaol derivates against LPS and HMGB1 induced NO production in RAW264.7 macrophages. Jiang X; Shen P; Zhou J; Ge H; Raj R; Wang W; Yu B; Zhang J Bioorg Med Chem Lett; 2022 Feb; 58():128523. PubMed ID: 34973341 [TBL] [Abstract][Full Text] [Related]
5. Biotransformation of betulin by Mucor subtilissimus to discover anti-inflammatory derivatives. Li J; Jiang B; Chen C; Fan B; Huang H; Chen G Phytochemistry; 2019 Oct; 166():112076. PubMed ID: 31351331 [TBL] [Abstract][Full Text] [Related]
6. Biotransformation of Food-Derived Saponins, Platycosides, into Deglucosylated Saponins Including Deglucosylated Platycodin D and Their Anti-Inflammatory Activities. Kang SH; Kim TH; Shin KC; Ko YJ; Oh DK J Agric Food Chem; 2019 Feb; 67(5):1470-1477. PubMed ID: 30652865 [TBL] [Abstract][Full Text] [Related]
7. Constituents Isolated from the Leaves of Wang L; Zhang K; Han S; Zhang L; Bai H; Bao F; Zeng Y; Wang J; Du H; Liu Y; Yang Z Molecules; 2019 May; 24(10):. PubMed ID: 31109095 [TBL] [Abstract][Full Text] [Related]
8. Application of tandem biotransformation for biosynthesis of new pentacyclic triterpenoid derivatives with neuroprotective effect. Xu SH; Chen HL; Fan Y; Xu W; Zhang J Bioorg Med Chem Lett; 2020 Feb; 30(4):126947. PubMed ID: 31924497 [TBL] [Abstract][Full Text] [Related]
9. Design, Synthesis and Evaluation of Pentacyclic Triterpenoids Similar to Glycyrrhetinic Acid Via Combination of Chemical and Microbial Modification as Glycogen Phosphorylases Inhibitor. Zhu Y; Zhang J; Huang X; Chen B; Qian H; Zhao B J Microbiol Biotechnol; 2018 Nov; 28(11):1876-1882. PubMed ID: 30562883 [TBL] [Abstract][Full Text] [Related]
10. Anti-Inflammatory Effects of Curvularin-Type Metabolites from a Marine-Derived Fungal Strain Penicillium sp. SF-5859 in Lipopolysaccharide-Induced RAW264.7 Macrophages. Ha TM; Ko W; Lee SJ; Kim YC; Son JY; Sohn JH; Yim JH; Oh H Mar Drugs; 2017 Sep; 15(9):. PubMed ID: 28869509 [TBL] [Abstract][Full Text] [Related]
11. Oleanene triterpenes from Sedum lineare Thunb. Niu XF; Liu X; Pan L; Qi L Fitoterapia; 2011 Oct; 82(7):960-3. PubMed ID: 21624444 [TBL] [Abstract][Full Text] [Related]
12. Anti-inflammatory properties of a triterpenoidal glycoside from Momordica cochinchinensis in LPS-stimulated macrophages. Jung K; Chin YW; Yoon Kd; Chae HS; Kim CY; Yoo H; Kim J Immunopharmacol Immunotoxicol; 2013 Feb; 35(1):8-14. PubMed ID: 22916793 [TBL] [Abstract][Full Text] [Related]
13. Microbial hydroxylation and glycosidation of oleanolic acid by Yan S; Lin H; Huang H; Yang M; Xu B; Chen G Nat Prod Res; 2019 Jul; 33(13):1849-1855. PubMed ID: 29842789 [TBL] [Abstract][Full Text] [Related]
14. Microbial transformation of glycyrrhetinic acid derivatives by Bacillus subtilis ATCC 6633 and Bacillus megaterium CGMCC 1.1741. Shen P; Zhang J; Zhu Y; Wang W; Yu B; Wang W Bioorg Med Chem; 2020 Jun; 28(11):115465. PubMed ID: 32299661 [TBL] [Abstract][Full Text] [Related]
15. Potential anti-inflammatory constituents of the stems of Gordonia chrysandra. Fu HZ; Li CJ; Yang JZ; Shen ZF; Zhang DM J Nat Prod; 2011 May; 74(5):1066-72. PubMed ID: 21473609 [TBL] [Abstract][Full Text] [Related]
16. New nor-oleanane triterpenoids from the fruits of Li J; Du K; Liu D; Meng D Nat Prod Res; 2020 Apr; 34(7):915-922. PubMed ID: 30600711 [TBL] [Abstract][Full Text] [Related]
17. Modulation of cytokine secretion by pentacyclic triterpenes from olive pomace oil in human mononuclear cells. Marquez-Martin A; De La Puerta R; Fernandez-Arche A; Ruiz-Gutierrez V; Yaqoob P Cytokine; 2006 Dec; 36(5-6):211-7. PubMed ID: 17292619 [TBL] [Abstract][Full Text] [Related]
18. Biotransformation of Betulonic Acid by the Fungus Song KN; Lu YJ; Chu CJ; Wu YN; Huang HL; Fan BY; Chen GT J Nat Prod; 2021 Oct; 84(10):2664-2674. PubMed ID: 34546050 [TBL] [Abstract][Full Text] [Related]
19. 4-Methylthio-butanyl derivatives from the seeds of Raphanus sativus and their biological evaluation on anti-inflammatory and antitumor activities. Kim KH; Moon E; Kim SY; Choi SU; Lee JH; Lee KR J Ethnopharmacol; 2014; 151(1):503-8. PubMed ID: 24231071 [TBL] [Abstract][Full Text] [Related]
20. Anti-Inflammatory Oleanolic Triterpenes from Chinese Acorns. Huang J; Wang Y; Li C; Wang X; He X Molecules; 2016 May; 21(5):. PubMed ID: 27213322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]