These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 32351371)

  • 1. Brain-Based Binary Communication Using Spatiotemporal Features of fNIRS Responses.
    Nagels-Coune L; Benitez-Andonegui A; Reuter N; Lührs M; Goebel R; De Weerd P; Riecke L; Sorger B
    Front Hum Neurosci; 2020; 14():113. PubMed ID: 32351371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. See, Hear, or Feel - to Speak: A Versatile Multiple-Choice Functional Near-Infrared Spectroscopy-Brain-Computer Interface Feasible With Visual, Auditory, or Tactile Instructions.
    Nagels-Coune L; Riecke L; Benitez-Andonegui A; Klinkhammer S; Goebel R; De Weerd P; Lührs M; Sorger B
    Front Hum Neurosci; 2021; 15():784522. PubMed ID: 34899223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward more intuitive brain-computer interfacing: classification of binary covert intentions using functional near-infrared spectroscopy.
    Hwang HJ; Choi H; Kim JY; Chang WD; Kim DW; Kim K; Jo S; Im CH
    J Biomed Opt; 2016 Sep; 21(9):091303. PubMed ID: 27050535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Another kind of 'BOLD Response': answering multiple-choice questions via online decoded single-trial brain signals.
    Sorger B; Dahmen B; Reithler J; Gosseries O; Maudoux A; Laureys S; Goebel R
    Prog Brain Res; 2009; 177():275-92. PubMed ID: 19818908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Augmented-Reality fNIRS-Based Brain-Computer Interface: A Proof-of-Concept Study.
    Benitez-Andonegui A; Burden R; Benning R; Möckel R; Lührs M; Sorger B
    Front Neurosci; 2020; 14():346. PubMed ID: 32410938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal assessment of the spatial correspondence between fNIRS and fMRI hemodynamic responses in motor tasks.
    Pereira J; Direito B; Lührs M; Castelo-Branco M; Sousa T
    Sci Rep; 2023 Feb; 13(1):2244. PubMed ID: 36755139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Time-Resolved fNIRS for Brain-Computer Interface Applications of Mental Communication.
    Abdalmalak A; Milej D; Yip LCM; Khan AR; Diop M; Owen AM; St Lawrence K
    Front Neurosci; 2020; 14():105. PubMed ID: 32132894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI).
    Asgher U; Khan MJ; Asif Nizami MH; Khalil K; Ahmad R; Ayaz Y; Naseer N
    Front Neurorobot; 2021; 15():605751. PubMed ID: 33815084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding of Walking Imagery and Idle State Using Sparse Representation Based on fNIRS.
    Li H; Gong A; Zhao L; Zhang W; Wang F; Fu Y
    Comput Intell Neurosci; 2021; 2021():6614112. PubMed ID: 33688336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated framework for joint HRF and drift estimation and HbO/HbR signal improvement in fNIRS data.
    Shah A; Seghouane AK
    IEEE Trans Med Imaging; 2014 Nov; 33(11):2086-97. PubMed ID: 24956281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topographic Somatosensory Imagery for Real-Time fMRI Brain-Computer Interfacing.
    Kaas A; Goebel R; Valente G; Sorger B
    Front Hum Neurosci; 2019; 13():427. PubMed ID: 31920588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding of semantic categories of imagined concepts of animals and tools in fNIRS.
    Rybář M; Poli R; Daly I
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33780916
    [No Abstract]   [Full Text] [Related]  

  • 14. Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface.
    Zhang S; Zheng Y; Wang D; Wang L; Ma J; Zhang J; Xu W; Li D; Zhang D
    Neurosci Lett; 2017 Aug; 655():35-40. PubMed ID: 28663052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding Articulation Motor Imagery using Early Connectivity Information in the Motor Cortex: A Functional Near-infrared Spectroscopy Study.
    Guo Z; Chen F
    IEEE Trans Neural Syst Rehabil Eng; 2022 Dec; PP():. PubMed ID: 37015470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-session communication with a locked-in patient by functional near-infrared spectroscopy.
    Abdalmalak A; Milej D; Norton L; Debicki DB; Gofton T; Diop M; Owen AM; St Lawrence K
    Neurophotonics; 2017 Oct; 4(4):040501. PubMed ID: 29296627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of a Portable Functional Near-Infrared Spectroscopy (fNIRS) System to Examine Team Experience During Crisis Event Management in Clinical Simulations.
    Xu J; Slagle JM; Banerjee A; Bracken B; Weinger MB
    Front Hum Neurosci; 2019; 13():85. PubMed ID: 30890926
    [No Abstract]   [Full Text] [Related]  

  • 18. Determining Optimal Feature-Combination for LDA Classification of Functional Near-Infrared Spectroscopy Signals in Brain-Computer Interface Application.
    Naseer N; Noori FM; Qureshi NK; Hong KS
    Front Hum Neurosci; 2016; 10():237. PubMed ID: 27252637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. fNIRS-based brain-computer interfaces: a review.
    Naseer N; Hong KS
    Front Hum Neurosci; 2015; 9():3. PubMed ID: 25674060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic responses during standing and sitting activities: a study toward fNIRS-BCI.
    Almulla L; Al-Naib I; Althobaiti M
    Biomed Phys Eng Express; 2020 Jul; 6(5):055005. PubMed ID: 33444236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.