These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32351947)

  • 1. Dynamic Modeling of CHO Cell Metabolism Using the Hybrid Cybernetic Approach With a Novel Elementary Mode Analysis Strategy.
    Martínez JA; Bulté DB; Contreras MA; Palomares LA; Ramírez OT
    Front Bioeng Biotechnol; 2020; 8():279. PubMed ID: 32351947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of metabolic function from limited data: Lumped hybrid cybernetic modeling (L-HCM).
    Song HS; Ramkrishna D
    Biotechnol Bioeng; 2010 Jun; 106(2):271-84. PubMed ID: 20148411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the metabolic dynamics at the genome-scale by optimized yield analysis.
    Luo H; Li P; Ji B; Nielsen J
    Metab Eng; 2023 Jan; 75():119-130. PubMed ID: 36503050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating cybernetic modeling with pathway analysis provides a dynamic, systems-level description of metabolic control.
    Young JD; Henne KL; Morgan JA; Konopka AE; Ramkrishna D
    Biotechnol Bioeng; 2008 Jun; 100(3):542-59. PubMed ID: 18438875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of dynamic metabolic flux analysis for process modeling: Robust flux estimation with regularization, confidence bounds, and selection of elementary modes.
    Hebing L; Neymann T; Engell S
    Biotechnol Bioeng; 2020 Jul; 117(7):2058-2073. PubMed ID: 32196640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.
    Klamt S; Müller S; Regensburger G; Zanghellini J
    Metab Eng; 2018 May; 47():153-169. PubMed ID: 29427605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-scale modeling of Chinese hamster ovary cells by hybrid semi-parametric flux balance analysis.
    Ramos JRC; Oliveira GP; Dumas P; Oliveira R
    Bioprocess Biosyst Eng; 2022 Nov; 45(11):1889-1904. PubMed ID: 36245012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic development of hybrid cybernetic models: application to recombinant yeast co-consuming glucose and xylose.
    Song HS; Morgan JA; Ramkrishna D
    Biotechnol Bioeng; 2009 Aug; 103(5):984-1002. PubMed ID: 19449391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly-pathway model, a novel approach to simulate multiple metabolic states by reaction network-based model - Application to amino acid depletion in CHO cell culture.
    Hagrot E; Oddsdóttir HÆ; Hosta JG; Jacobsen EW; Chotteau V
    J Biotechnol; 2017 Oct; 259():235-247. PubMed ID: 28689014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative intracellular flux modeling and applications in biotherapeutic development and production using CHO cell cultures.
    Huang Z; Lee DY; Yoon S
    Biotechnol Bioeng; 2017 Dec; 114(12):2717-2728. PubMed ID: 28710856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic metabolic models of CHO cell cultures through minimal sets of elementary flux modes.
    Zamorano F; Vande Wouwer A; Jungers RM; Bastin G
    J Biotechnol; 2013 Apr; 164(3):409-22. PubMed ID: 22698821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering from a cybernetic perspective. 1. Theoretical preliminaries.
    Varner J; Ramkrishna D
    Biotechnol Prog; 1999 May; 15(3):407-25. PubMed ID: 10356258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cybernetic models based on lumped elementary modes accurately predict strain-specific metabolic function.
    Song HS; Ramkrishna D
    Biotechnol Bioeng; 2011 Jan; 108(1):127-40. PubMed ID: 20830732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genome-scale dynamic constraint-based modelling (gDCBM) framework predicts growth dynamics, medium composition and intracellular flux distributions in CHO clonal variations.
    Yasemi M; Jolicoeur M
    Metab Eng; 2023 Jul; 78():209-222. PubMed ID: 37348809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control.
    Teixeira AP; Alves C; Alves PM; Carrondo MJ; Oliveira R
    BMC Bioinformatics; 2007 Jan; 8():30. PubMed ID: 17261182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic modeling of Saccharomyces cerevisiae using the optimal control of homeostasis: a cybernetic model definition.
    Giuseppin ML; van Riel NA
    Metab Eng; 2000 Jan; 2(1):14-33. PubMed ID: 10935932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of Zymomonas mobilis central metabolism for novel metabolic engineering strategies.
    Kalnenieks U; Pentjuss A; Rutkis R; Stalidzans E; Fell DA
    Front Microbiol; 2014; 5():42. PubMed ID: 24550906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CHOmpact: A reduced metabolic model of Chinese hamster ovary cells with enhanced interpretability.
    Jiménez Del Val I; Kyriakopoulos S; Albrecht S; Stockmann H; Rudd PM; Polizzi KM; Kontoravdi C
    Biotechnol Bioeng; 2023 Sep; 120(9):2479-2493. PubMed ID: 37272445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the optimal flux space of genome-scale metabolic reconstructions through modified latin-hypercube sampling.
    Chaudhary N; Tøndel K; Bhatnagar R; dos Santos VA; Puchałka J
    Mol Biosyst; 2016 Mar; 12(3):994-1005. PubMed ID: 26818782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.