BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 32352002)

  • 1. Human Organ-Specific 3D Cancer Models Produced by the Stromal Self-Assembly Method of Tissue Engineering for the Study of Solid Tumors.
    Roy V; Magne B; Vaillancourt-Audet M; Blais M; Chabaud S; Grammond E; Piquet L; Fradette J; Laverdière I; Moulin VJ; Landreville S; Germain L; Auger FA; Gros-Louis F; Bolduc S
    Biomed Res Int; 2020; 2020():6051210. PubMed ID: 32352002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of spherically structured 3D in vitro tumor models -Advances and prospects.
    Ferreira LP; Gaspar VM; Mano JF
    Acta Biomater; 2018 Jul; 75():11-34. PubMed ID: 29803007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of an in vitro 3D PDAC stroma rich spheroid model.
    Ware MJ; Keshishian V; Law JJ; Ho JC; Favela CA; Rees P; Smith B; Mohammad S; Hwang RF; Rajapakshe K; Coarfa C; Huang S; Edwards DP; Corr SJ; Godin B; Curley SA
    Biomaterials; 2016 Nov; 108():129-42. PubMed ID: 27627810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide and peptide-carbon nanotube hydrogels as scaffolds for tissue & 3D tumor engineering.
    Sheikholeslam M; Wheeler SD; Duke KG; Marsden M; Pritzker M; Chen P
    Acta Biomater; 2018 Mar; 69():107-119. PubMed ID: 29248638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid biofabrication technique for self-assembled collagen-based multicellular and heterogeneous 3D tissue constructs.
    Shahin-Shamsabadi A; Selvaganapathy PR
    Acta Biomater; 2019 Jul; 92():172-183. PubMed ID: 31085365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-engineered human 3D model of bladder cancer for invasion study and drug discovery.
    Ringuette Goulet C; Bernard G; Chabaud S; Couture A; Langlois A; Neveu B; Pouliot F; Bolduc S
    Biomaterials; 2017 Nov; 145():233-241. PubMed ID: 28888113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breast cancer models: Engineering the tumor microenvironment.
    Bahcecioglu G; Basara G; Ellis BW; Ren X; Zorlutuna P
    Acta Biomater; 2020 Apr; 106():1-21. PubMed ID: 32045679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinstructive microparticles for self-assembly of mesenchymal stem Cell-3D tumor spheroids.
    Ferreira LP; Gaspar VM; Mano JF
    Biomaterials; 2018 Dec; 185():155-173. PubMed ID: 30245385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and verification of a three-dimensional (3D) breast cancer tumor model composed of circulating tumor cell (CTC) subsets.
    Anil-Inevi M; Sağlam-Metiner P; Kabak EC; Gulce-Iz S
    Mol Biol Rep; 2020 Jan; 47(1):97-109. PubMed ID: 31583566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages.
    Habanjar O; Diab-Assaf M; Caldefie-Chezet F; Delort L
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Property of Hydrogels and the Presence of Adipose Stem Cells in Tumor Stroma Affect Spheroid Formation in the 3D Osteosarcoma Model.
    Kundu B; Bastos ARF; Brancato V; Cerqueira MT; Oliveira JM; Correlo VM; Reis RL; Kundu SC
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14548-14559. PubMed ID: 30943004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heralding a new paradigm in 3D tumor modeling.
    Fong EL; Harrington DA; Farach-Carson MC; Yu H
    Biomaterials; 2016 Nov; 108():197-213. PubMed ID: 27639438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioimaging of Mesenchymal Stem Cells Spatial Distribution and Interactions with 3D In Vitro Tumor Spheroids.
    Ferreira LP; Gaspar VM; Mano JF
    Methods Mol Biol; 2021; 2269():49-61. PubMed ID: 33687671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D bioprinting complex models of cancer.
    Sharma R; Restan Perez M; da Silva VA; Thomsen J; Bhardwaj L; Andrade TAM; Alhussan A; Willerth SM
    Biomater Sci; 2023 May; 11(10):3414-3430. PubMed ID: 37000528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered silk fibroin protein 3D matrices for in vitro tumor model.
    Talukdar S; Mandal M; Hutmacher DW; Russell PJ; Soekmadji C; Kundu SC
    Biomaterials; 2011 Mar; 32(8):2149-59. PubMed ID: 21167597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D approaches to model the tumor microenvironment of pancreatic cancer.
    Tomás-Bort E; Kieler M; Sharma S; Candido JB; Loessner D
    Theranostics; 2020; 10(11):5074-5089. PubMed ID: 32308769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments.
    Meng F; Meyer CM; Joung D; Vallera DA; McAlpine MC; Panoskaltsis-Mortari A
    Adv Mater; 2019 Mar; 31(10):e1806899. PubMed ID: 30663123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues.
    Brancato V; Garziano A; Gioiella F; Urciuolo F; Imparato G; Panzetta V; Fusco S; Netti PA
    Acta Biomater; 2017 Jan; 47():1-13. PubMed ID: 27721010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.