BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32352210)

  • 1. Production of the Inaccessible Sesquiterpene (-)-5-Epieremophilene by Metabolically Engineered Escherichia coli.
    Luo LQ; Chen YG; Li DS; Liu Y; Li SH
    Chem Biodivers; 2020 Jul; 17(7):e2000219. PubMed ID: 32352210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a Novel (-)-5-Epieremophilene Synthase from
    Fang X; Li CY; Yang Y; Cui MY; Chen XY; Yang L
    Front Plant Sci; 2017; 8():627. PubMed ID: 28487717
    [No Abstract]   [Full Text] [Related]  

  • 3. Modulating the Precursor and Terpene Synthase Supply for the Whole-Cell Biocatalytic Production of the Sesquiterpene (+)-Zizaene in a Pathway Engineered
    Aguilar F; Scheper T; Beutel S
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31238595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sesquiterpene Synthase-Catalyzed Conversion of a Farnesyl Diphosphate Analogue to a Nonnatural Terpenoid Ether.
    Huynh F; Miller DJ; Allemann RK
    Methods Enzymol; 2018; 608():83-95. PubMed ID: 30173774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The in vivo synthesis of plant sesquiterpenes by Escherichia coli.
    Martin VJ; Yoshikuni Y; Keasling JD
    Biotechnol Bioeng; 2001 Dec; 75(5):497-503. PubMed ID: 11745124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered Escherichia coli.
    Cao Y; Zhang R; Liu W; Zhao G; Niu W; Guo J; Xian M; Liu H
    Sci Rep; 2019 Jan; 9(1):95. PubMed ID: 30643175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Production of (+)-Aristolochene and (+)-Bicyclogermacrene in
    Huang ZY; Wu QY; Li CX; Yu HL; Xu JH
    J Agric Food Chem; 2022 May; 70(19):5860-5868. PubMed ID: 35506591
    [No Abstract]   [Full Text] [Related]  

  • 8. A new sesquiterpene synthase catalyzing the formation of (R)-β-bisabolene from medicinal plant Colquhounia coccinea var. mollis and its anti-adipogenic and antibacterial activities.
    Li DS; Shi LL; Guo K; Luo SH; Liu YC; Chen YG; Liu Y; Li SH
    Phytochemistry; 2023 Jul; 211():113681. PubMed ID: 37080413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene.
    Sharon-Asa L; Shalit M; Frydman A; Bar E; Holland D; Or E; Lavi U; Lewinsohn E; Eyal Y
    Plant J; 2003 Dec; 36(5):664-74. PubMed ID: 14617067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The santalene synthase from Cinnamomum camphora: Reconstruction of a sesquiterpene synthase from a monoterpene synthase.
    Di Girolamo A; Durairaj J; van Houwelingen A; Verstappen F; Bosch D; Cankar K; Bouwmeester H; de Ridder D; van Dijk ADJ; Beekwilder J
    Arch Biochem Biophys; 2020 Nov; 695():108647. PubMed ID: 33121934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed.
    Tippmann S; Scalcinati G; Siewers V; Nielsen J
    Biotechnol Bioeng; 2016 Jan; 113(1):72-81. PubMed ID: 26108688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers.
    Tholl D; Chen F; Petri J; Gershenzon J; Pichersky E
    Plant J; 2005 Jun; 42(5):757-71. PubMed ID: 15918888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of sesquiterpene metabolism in yeast.
    Takahashi S; Yeo Y; Greenhagen BT; McMullin T; Song L; Maurina-Brunker J; Rosson R; Noel JP; Chappell J
    Biotechnol Bioeng; 2007 May; 97(1):170-81. PubMed ID: 17013941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Escherichia coli for production of valerenadiene.
    Nybo SE; Saunders J; McCormick SP
    J Biotechnol; 2017 Nov; 262():60-66. PubMed ID: 28988031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biosynthesis of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli through introducing mevalonate pathway].
    Wu T; Wu S; Yin Q; Dai H; Li S; Dong F; Chen B; Fang H
    Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1040-8. PubMed ID: 22016988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum.
    Frohwitter J; Heider SA; Peters-Wendisch P; Beekwilder J; Wendisch VF
    J Biotechnol; 2014 Dec; 191():205-13. PubMed ID: 24910970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of sesquiterpene synthases from the Basidiomycota Coniophora puteana for the efficient and highly selective β-copaene and cubebol production in E. coli.
    Mischko W; Hirte M; Fuchs M; Mehlmer N; Brück TB
    Microb Cell Fact; 2018 Oct; 17(1):164. PubMed ID: 30348159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sesquiterpene Synthase Engineering and Targeted Engineering of α-Santalene Overproduction in
    Zhang J; Wang X; Zhang X; Zhang Y; Wang F; Li X
    J Agric Food Chem; 2022 May; 70(17):5377-5385. PubMed ID: 35465671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of sesterterpene ophiobolin by a bifunctional terpene synthase in Escherichia coli.
    Yuan W; Lv S; Chen L; Zhao Y; Deng Z; Hong K
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8785-8797. PubMed ID: 31515597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel approaches and achievements in biosynthesis of functional isoprenoids in Escherichia coli.
    Harada H; Misawa N
    Appl Microbiol Biotechnol; 2009 Oct; 84(6):1021-31. PubMed ID: 19672590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.