BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 32352294)

  • 1. Improving Docking-Based Virtual Screening Ability by Integrating Multiple Energy Auxiliary Terms from Molecular Docking Scoring.
    Ye WL; Shen C; Xiong GL; Ding JJ; Lu AP; Hou TJ; Cao DS
    J Chem Inf Model; 2020 Sep; 60(9):4216-4230. PubMed ID: 32352294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving structure-based virtual screening performance via learning from scoring function components.
    Xiong GL; Ye WL; Shen C; Lu AP; Hou TJ; Cao DS
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32496540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy or novelty: what can we gain from target-specific machine-learning-based scoring functions in virtual screening?
    Shen C; Weng G; Zhang X; Leung EL; Yao X; Pang J; Chai X; Li D; Wang E; Cao D; Hou T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33418562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning.
    Yasuo N; Sekijima M
    J Chem Inf Model; 2019 Mar; 59(3):1050-1061. PubMed ID: 30808172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning on ligand-residue interaction profiles to significantly improve binding affinity prediction.
    Ji B; He X; Zhai J; Zhang Y; Man VH; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33758923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classical scoring functions for docking are unable to exploit large volumes of structural and interaction data.
    Li H; Peng J; Sidorov P; Leung Y; Leung KS; Wong MH; Lu G; Ballester PJ
    Bioinformatics; 2019 Oct; 35(20):3989-3995. PubMed ID: 30873528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of compound library size on the performance of scoring functions for structure-based virtual screening.
    Fresnais L; Ballester PJ
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32568385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions.
    Shen C; Hu Y; Wang Z; Zhang X; Zhong H; Wang G; Yao X; Xu L; Cao D; Hou T
    Brief Bioinform; 2021 Jan; 22(1):497-514. PubMed ID: 31982914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving protein-ligand docking and screening accuracies by incorporating a scoring function correction term.
    Zheng L; Meng J; Jiang K; Lan H; Wang Z; Lin M; Li W; Guo H; Wei Y; Mu Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35289359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Consensus Scoring Improves Performance Across Targets in Structure-Based Virtual Screening.
    Ericksen SS; Wu H; Zhang H; Michael LA; Newton MA; Hoffmann FM; Wildman SA
    J Chem Inf Model; 2017 Jul; 57(7):1579-1590. PubMed ID: 28654262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rescoring of docking poses under Occam's Razor: are there simpler solutions?
    Zhenin M; Bahia MS; Marcou G; Varnek A; Senderowitz H; Horvath D
    J Comput Aided Mol Des; 2018 Sep; 32(9):877-888. PubMed ID: 30173397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TB-IECS: an accurate machine learning-based scoring function for virtual screening.
    Zhang X; Shen C; Jiang D; Zhang J; Ye Q; Xu L; Hou T; Pan P; Kang Y
    J Cheminform; 2023 Jul; 15(1):63. PubMed ID: 37403155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing false positive rate of docking-based virtual screening by active learning.
    Wang L; Shi SH; Li H; Zeng XX; Liu SY; Liu ZQ; Deng YF; Lu AP; Hou TJ; Cao DS
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligity: A Non-Superpositional, Knowledge-Based Approach to Virtual Screening.
    Ebejer JP; Finn PW; Wong WK; Deane CM; Morris GM
    J Chem Inf Model; 2019 Jun; 59(6):2600-2616. PubMed ID: 31117509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 6(Suppl 6):S3. PubMed ID: 25916860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.