These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32352340)

  • 1. Skeletal muscle adaptations to heat therapy.
    Kim K; Monroe JC; Gavin TP; Roseguini BT
    J Appl Physiol (1985); 2020 Jun; 128(6):1635-1642. PubMed ID: 32352340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postexercise whole body heat stress additively enhances endurance training-induced mitochondrial adaptations in mouse skeletal muscle.
    Tamura Y; Matsunaga Y; Masuda H; Takahashi Y; Takahashi Y; Terada S; Hoshino D; Hatta H
    Am J Physiol Regul Integr Comp Physiol; 2014 Oct; 307(7):R931-43. PubMed ID: 25080501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive heat therapy in sedentary humans increases skeletal muscle capillarization and eNOS content but not mitochondrial density or GLUT4 content.
    Hesketh K; Shepherd SO; Strauss JA; Low DA; Cooper RJ; Wagenmakers AJM; Cocks M
    Am J Physiol Heart Circ Physiol; 2019 Jul; 317(1):H114-H123. PubMed ID: 31074654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Daily heat treatment maintains mitochondrial function and attenuates atrophy in human skeletal muscle subjected to immobilization.
    Hafen PS; Abbott K; Bowden J; Lopiano R; Hancock CR; Hyldahl RD
    J Appl Physiol (1985); 2019 Jul; 127(1):47-57. PubMed ID: 31046520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive heat stress induces mitochondrial adaptations in skeletal muscle.
    Marchant ED; Nelson WB; Hyldahl RD; Gifford JR; Hancock CR
    Int J Hyperthermia; 2023; 40(1):2205066. PubMed ID: 37106474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse.
    Memme JM; Slavin M; Moradi N; Hood DA
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle mitochondria: a major player in exercise, health and disease.
    Russell AP; Foletta VC; Snow RJ; Wadley GD
    Biochim Biophys Acta; 2014 Apr; 1840(4):1276-84. PubMed ID: 24291686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated exposure to heat stress induces mitochondrial adaptation in human skeletal muscle.
    Hafen PS; Preece CN; Sorensen JR; Hancock CR; Hyldahl RD
    J Appl Physiol (1985); 2018 Nov; 125(5):1447-1455. PubMed ID: 30024339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Daily heat stress treatment rescues denervation-activated mitochondrial clearance and atrophy in skeletal muscle.
    Tamura Y; Kitaoka Y; Matsunaga Y; Hoshino D; Hatta H
    J Physiol; 2015 Jun; 593(12):2707-20. PubMed ID: 25900738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The heat shock connection: skeletal muscle hypertrophy and atrophy.
    Fennel ZJ; Amorim FT; Deyhle MR; Hafen PS; Mermier CM
    Am J Physiol Regul Integr Comp Physiol; 2022 Jul; 323(1):R133-R148. PubMed ID: 35536704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle: implications for health and disease.
    Hood DA; Uguccioni G; Vainshtein A; D'souza D
    Compr Physiol; 2011 Jul; 1(3):1119-34. PubMed ID: 23733637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle.
    Fiorenza M; Gunnarsson TP; Hostrup M; Iaia FM; Schena F; Pilegaard H; Bangsbo J
    J Physiol; 2018 Jul; 596(14):2823-2840. PubMed ID: 29727016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of repeated local heat therapy on skeletal muscle structure and function in humans.
    Kim K; Reid BA; Casey CA; Bender BE; Ro B; Song Q; Trewin AJ; Petersen AC; Kuang S; Gavin TP; Roseguini BT
    J Appl Physiol (1985); 2020 Mar; 128(3):483-492. PubMed ID: 31971474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy.
    Theilen NT; Kunkel GH; Tyagi SC
    J Cell Physiol; 2017 Sep; 232(9):2348-2358. PubMed ID: 27966783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beneficial effects of exercise on age-related mitochondrial dysfunction and oxidative stress in skeletal muscle.
    Joseph AM; Adhihetty PJ; Leeuwenburgh C
    J Physiol; 2016 Sep; 594(18):5105-23. PubMed ID: 26503074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unravelling the mechanisms regulating muscle mitochondrial biogenesis.
    Hood DA; Tryon LD; Carter HN; Kim Y; Chen CC
    Biochem J; 2016 Aug; 473(15):2295-314. PubMed ID: 27470593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria in skeletal muscle: adaptable rheostats of apoptotic susceptibility.
    Adhihetty PJ; O'Leary MF; Hood DA
    Exerc Sport Sci Rev; 2008 Jul; 36(3):116-21. PubMed ID: 18580291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects.
    Hyatt H; Deminice R; Yoshihara T; Powers SK
    Arch Biochem Biophys; 2019 Feb; 662():49-60. PubMed ID: 30452895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical Exercise for Muscle Atrophy.
    Shen L; Meng X; Zhang Z; Wang T
    Adv Exp Med Biol; 2018; 1088():529-545. PubMed ID: 30390268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disuse atrophy of human skeletal muscle: cell signaling and potential interventions.
    Urso ML
    Med Sci Sports Exerc; 2009 Oct; 41(10):1860-8. PubMed ID: 19727028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.