These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32352465)

  • 1. Nanocrystal synthesis, μfluidic sample dilution and direct extraction of single emission linewidths in continuous flow.
    Lignos I; Utzat H; Bawendi MG; Jensen KF
    Lab Chip; 2020 Jun; 20(11):1975-1980. PubMed ID: 32352465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths.
    Cui J; Beyler AP; Coropceanu I; Cleary L; Avila TR; Chen Y; Cordero JM; Heathcote SL; Harris DK; Chen O; Cao J; Bawendi MG
    Nano Lett; 2016 Jan; 16(1):289-96. PubMed ID: 26636347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths.
    Cui J; Beyler AP; Marshall LF; Chen O; Harris DK; Wanger DD; Brokmann X; Bawendi MG
    Nat Chem; 2013 Jul; 5(7):602-6. PubMed ID: 23787751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deconstructing the photon stream from single nanocrystals: from binning to correlation.
    Cui J; Beyler AP; Bischof TS; Wilson MW; Bawendi MG
    Chem Soc Rev; 2014 Feb; 43(4):1287-310. PubMed ID: 24280771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Nanocrystal Spectroscopy of Shortwave Infrared Emitters.
    Bertram SN; Spokoyny B; Franke D; Caram JR; Yoo JJ; Murphy RP; Grein ME; Bawendi MG
    ACS Nano; 2019 Feb; 13(2):1042-1049. PubMed ID: 30500155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopy of single nanocrystals.
    Fernée MJ; Tamarat P; Lounis B
    Chem Soc Rev; 2014 Feb; 43(4):1311-37. PubMed ID: 24121992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals.
    Johns RW; Bechtel HA; Runnerstrom EL; Agrawal A; Lounis SD; Milliron DJ
    Nat Commun; 2016 May; 7():11583. PubMed ID: 27174681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamental Limit of the Emission Linewidths of Quantum Dots: An Ab Initio Study of CdSe Nanocrystals.
    Kang S; Kim Y; Jang E; Kang Y; Han S
    ACS Appl Mater Interfaces; 2020 May; 12(19):22012-22018. PubMed ID: 32298076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing.
    Epps RW; Felton KC; Coley CW; Abolhasani M
    Lab Chip; 2017 Nov; 17(23):4040-4047. PubMed ID: 29063081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryogenic Single-Nanocrystal Spectroscopy: Reading the Spectral Fingerprint of Individual CdSe Quantum Dots.
    Fernée MJ; Tamarat P; Lounis B
    J Phys Chem Lett; 2013 Feb; 4(4):609-18. PubMed ID: 26281875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-temperature crystallization of nanocrystals into three-dimensional superlattices.
    Wu L; Willis JJ; McKay IS; Diroll BT; Qin J; Cargnello M; Tassone CJ
    Nature; 2017 Aug; 548(7666):197-201. PubMed ID: 28759888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth.
    Lignos I; Maceiczyk R; deMello AJ
    Acc Chem Res; 2017 May; 50(5):1248-1257. PubMed ID: 28467055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-nanocrystal spectroscopy of white-light-emitting CdSe nanocrystals.
    Dukes AD; Samson PC; Keene JD; Davis LM; Wikswo JP; Rosenthal SJ
    J Phys Chem A; 2011 Apr; 115(16):4076-81. PubMed ID: 21338163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emission characterization of a single CdSe-ZnS nanocrystal with high temporal and spectral resolution by photon-correlation Fourier spectroscopy.
    Coolen L; Brokmann X; Spinicelli P; Hermier JP
    Phys Rev Lett; 2008 Jan; 100(2):027403. PubMed ID: 18232922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of atomic structure and photoluminescence of the same quantum dot: pinpointing surface and internal defects that inhibit photoluminescence.
    Orfield NJ; McBride JR; Keene JD; Davis LM; Rosenthal SJ
    ACS Nano; 2015 Jan; 9(1):831-9. PubMed ID: 25526260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinetics of growth of semiconductor nanocrystals in a hot amphiphile matrix.
    Dushkin CD; Saita S; Yoshie K; Yamaguchi Y
    Adv Colloid Interface Sci; 2000 Dec; 88(1-2):37-78. PubMed ID: 11185702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Growth of Metal Oxide Nanocrystals: Enhanced Control of Nanocrystal Size and Radial Dopant Distribution.
    Jansons AW; Hutchison JE
    ACS Nano; 2016 Jul; 10(7):6942-51. PubMed ID: 27328328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.
    Brutchey RL
    Acc Chem Res; 2015 Nov; 48(11):2918-26. PubMed ID: 26545235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bistable magnetoresistance switching in exchange-coupled CoFe₂O₄--Fe₃O₄ binary nanocrystal superlattices by self-assembly and thermal annealing.
    Chen J; Ye X; Oh SJ; Kikkawa JM; Kagan CR; Murray CB
    ACS Nano; 2013 Feb; 7(2):1478-86. PubMed ID: 23273052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure.
    Kůsová K; Cibulka O; Dohnalová K; Pelant I; Valenta J; Fucíková A; Zídek K; Lang J; Englich J; Matejka P; Stepánek P; Bakardjieva S
    ACS Nano; 2010 Aug; 4(8):4495-504. PubMed ID: 20690596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.