These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 32353493)
1. A novel drug delivery system obtained from hydrophobic modified amphiphilic polymers by Maillard reaction. Feng N; Wu H; Xie Y; Wu Q Int J Biol Macromol; 2020 Aug; 157():146-150. PubMed ID: 32353493 [TBL] [Abstract][Full Text] [Related]
2. pH-sensitive micelles self-assembled from polymer brush (PAE- Huang X; Liao W; Zhang G; Kang S; Zhang CY Int J Nanomedicine; 2017; 12():2215-2226. PubMed ID: 28356738 [TBL] [Abstract][Full Text] [Related]
3. Amphiphilic block copolymer NPs obtained by coupling ricinoleic acid/sebacic acids and mPEG: Synthesis, characterization, and controlled release of paclitaxel. Zhou S; Sun W; Zhai Y J Biomater Sci Polym Ed; 2018 Dec; 29(18):2201-2217. PubMed ID: 30285542 [TBL] [Abstract][Full Text] [Related]
4. Acetal-linked PEGylated paclitaxel prodrugs forming free-paclitaxel-loaded pH-responsive micelles with high drug loading capacity and improved drug delivery. Huang D; Zhuang Y; Shen H; Yang F; Wang X; Wu D Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():60-68. PubMed ID: 29025675 [TBL] [Abstract][Full Text] [Related]
5. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Shenoy D; Little S; Langer R; Amiji M Mol Pharm; 2005; 2(5):357-66. PubMed ID: 16196488 [TBL] [Abstract][Full Text] [Related]
6. pH/redox dual-responsive amphiphilic zwitterionic polymers with a precisely controlled structure as anti-cancer drug carriers. Wu Z; Gan Z; Chen B; Chen F; Cao J; Luo X Biomater Sci; 2019 Aug; 7(8):3190-3203. PubMed ID: 31145392 [TBL] [Abstract][Full Text] [Related]
7. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101 [TBL] [Abstract][Full Text] [Related]
8. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route. Muley P; Kumar S; El Kourati F; Kesharwani SS; Tummala H Int J Pharm; 2016 Mar; 500(1-2):32-41. PubMed ID: 26792170 [TBL] [Abstract][Full Text] [Related]
9. Biodegradable paclitaxel-loaded microparticles prepared from novel block copolymers: influence of polymer composition on drug encapsulation and release. Sartori S; Caporale A; Rechichi A; Cufari D; Cristallini C; Barbani N; Giusti P; Ciardelli G J Pept Sci; 2013 Apr; 19(4):205-13. PubMed ID: 23495215 [TBL] [Abstract][Full Text] [Related]
10. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery. Zhang L; Zhu D; Dong X; Sun H; Song C; Wang C; Kong D Int J Nanomedicine; 2015; 10():2101-14. PubMed ID: 25844039 [TBL] [Abstract][Full Text] [Related]
11. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics. Gu L; Faig A; Abdelhamid D; Uhrich K Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069 [TBL] [Abstract][Full Text] [Related]
12. Drug-loaded and superparamagnetic iron oxide nanoparticle surface-embedded amphiphilic block copolymer micelles for integrated chemotherapeutic drug delivery and MR imaging. Hu J; Qian Y; Wang X; Liu T; Liu S Langmuir; 2012 Jan; 28(4):2073-82. PubMed ID: 22047551 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of drug resistance reversal in Dox-resistant MCF-7 cells by pH-responsive amphiphilic polyphosphazene containing diisopropylamino side groups. Qiu L; Zheng C; Zhao Q Mol Pharm; 2012 May; 9(5):1109-17. PubMed ID: 22494535 [TBL] [Abstract][Full Text] [Related]
14. Drug release from a pH-sensitive multiblock co-polymer thermogel. Garripelli VK; Namgung R; Kim WJ; Jo S J Biomater Sci Polym Ed; 2012; 23(12):1505-19. PubMed ID: 21771392 [TBL] [Abstract][Full Text] [Related]
15. Rapidly pH-responsive degradable polymersomes for triggered release of hydrophilic and hydrophobic anticancer drugs. Chen W; Meng F; Cheng R; Zhong Z J Control Release; 2011 Nov; 152 Suppl 1():e7-9. PubMed ID: 22195934 [No Abstract] [Full Text] [Related]
16. Anisamide-functionalized pH-responsive amphiphilic chitosan-based paclitaxel micelles for sigma-1 receptor targeted prostate cancer treatment. Qu D; Jiao M; Lin H; Tian C; Qu G; Xue J; Xue L; Ju C; Zhang C Carbohydr Polym; 2020 Feb; 229():115498. PubMed ID: 31826492 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of polymeric pH-sensitive STEALTH® nanoparticles for tumor delivery of a lipophilic prodrug of paclitaxel. Lundberg BB Int J Pharm; 2011 Apr; 408(1-2):208-12. PubMed ID: 21296135 [TBL] [Abstract][Full Text] [Related]
18. Dual-Stimuli-Responsive Paclitaxel Delivery Nanosystems from Chemically Conjugate Self-Assemblies for Carcinoma Treatment. Xu JW; Ge X; Lv LH; Xu F; Luo YL Macromol Rapid Commun; 2018 Dec; 39(24):e1800628. PubMed ID: 30393901 [TBL] [Abstract][Full Text] [Related]
19. Think Beyond the Core: Impact of the Hydrophilic Corona on Drug Solubilization Using Polymer Micelles. Haider MS; Lübtow MM; Endres S; Forster S; Flegler VJ; Böttcher B; Aseyev V; Pöppler AC; Luxenhofer R ACS Appl Mater Interfaces; 2020 Jun; 12(22):24531-24543. PubMed ID: 32378873 [TBL] [Abstract][Full Text] [Related]
20. pH-Responsive polymeric micelles based on amphiphilic chitosan derivatives: Effect of hydrophobic cores on oral meloxicam delivery. Woraphatphadung T; Sajomsang W; Gonil P; Treetong A; Akkaramongkolporn P; Ngawhirunpat T; Opanasopit P Int J Pharm; 2016 Jan; 497(1-2):150-60. PubMed ID: 26657271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]