BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32353532)

  • 1. Determination of ice interface temperature, sublimation rate and the dried product resistance, and its application in the assessment of microcollapse using through-vial impedance spectroscopy.
    Jeeraruangrattana Y; Smith G; Polygalov E; Ermolina I
    Eur J Pharm Biopharm; 2020 Jul; 152():144-163. PubMed ID: 32353532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.
    Smith G; Jeeraruangrattana Y; Ermolina I
    Eur J Pharm Biopharm; 2018 Sep; 130():224-235. PubMed ID: 29940225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An impedance-based process analytical technology for monitoring the lyophilisation process.
    Smith G; Polygalov E; Arshad MS; Page T; Taylor J; Ermolina I
    Int J Pharm; 2013 Jun; 449(1-2):72-83. PubMed ID: 23591008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observations on the Changing Shape of the Ice Mass and the Determination of the Sublimation End Point in Freeze-Drying: An Application for Through-Vial Impedance Spectroscopy (TVIS).
    Pandya B; Smith G; Ermolina I; Polygalov E
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of collapse of amorphous-based lyophilized cake induced by slow ramp during the shelf ramp process.
    Ohori R; Akita T; Yamashita C
    Int J Pharm; 2019 Jun; 564():461-471. PubMed ID: 31015005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An application for impedance spectroscopy in the characterisation of the glass transition during the lyophilization cycle: the example of a 10% w/v maltodextrin solution.
    Smith G; Arshad MS; Polygalov E; Ermolina I
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1130-40. PubMed ID: 23959072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying.
    Scutellà B; Trelea IC; Bourlès E; Fonseca F; Passot S
    Eur J Pharm Biopharm; 2018 Jul; 128():379-388. PubMed ID: 29746910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature Measurement by Sublimation Rate as a Process Analytical Technology Tool in Lyophilization.
    Kawasaki H; Shimanouchi T; Sawada H; Hosomi H; Hamabe Y; Kimura Y
    J Pharm Sci; 2019 Jul; 108(7):2305-2314. PubMed ID: 30825460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Through-vial impedance spectroscopy of critical events during the freezing stage of the lyophilization cycle: the example of the impact of sucrose on the crystallization of mannitol.
    Arshad MS; Smith G; Polygalov E; Ermolina I
    Eur J Pharm Biopharm; 2014 Aug; 87(3):598-605. PubMed ID: 24825125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Point Wireless Temperature Sensing System for Monitoring Pharmaceutical Lyophilization.
    Jiang X; Zhu T; Kodama T; Raghunathan N; Alexeenko A; Peroulis D
    Front Chem; 2018; 6():288. PubMed ID: 30065924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Imaging as a Noncontact Inline Process Analytical Tool for Product Temperature Monitoring during Continuous Freeze-Drying of Unit Doses.
    Van Bockstal PJ; Corver J; De Meyer L; Vervaet C; De Beer T
    Anal Chem; 2018 Nov; 90(22):13591-13599. PubMed ID: 30339362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of primary drying temperature on process efficiency and product performance of lyophilized Ertapenam sodium.
    Vohra ZA; Zode SS; Bansal AK
    Drug Dev Ind Pharm; 2019 Dec; 45(12):1940-1948. PubMed ID: 31625418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of manometric temperature measurement as a method of monitoring product temperature during lyophilization.
    Milton N; Pikal MJ; Roy ML; Nail SL
    PDA J Pharm Sci Technol; 1997; 51(1):7-16. PubMed ID: 9099059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations.
    Awotwe Otoo D; Agarabi C; Khan MA
    J Pharm Sci; 2014 Jul; 103(7):2042-2052. PubMed ID: 24840395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality.
    Korang-Yeboah M; Srinivasan C; Siddiqui A; Awotwe-Otoo D; Cruz CN; Muhammad A
    AAPS PharmSciTech; 2018 Jan; 19(1):448-459. PubMed ID: 28785859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of laboratory and production freeze drying cycles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Through-vial impedance spectroscopy of the mechanisms of annealing in the freeze-drying of maltodextrin: the impact of annealing hold time and temperature on the primary drying rate.
    Smith G; Arshad MS; Polygalov E; Ermolina I
    J Pharm Sci; 2014 Jun; 103(6):1799-810. PubMed ID: 24756948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Product mass transfer resistance directly determined during freeze-drying cycle runs using tunable diode laser absorption spectroscopy (TDLAS) and pore diffusion model.
    Kuu WY; O'Bryan KR; Hardwick LM; Paul TW
    Pharm Dev Technol; 2011 Aug; 16(4):343-57. PubMed ID: 20387998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.