BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

607 related articles for article (PubMed ID: 32353614)

  • 1. Empagliflozin improves left ventricular diastolic function of db/db mice.
    Moellmann J; Klinkhammer BM; Droste P; Kappel B; Haj-Yehia E; Maxeiner S; Artati A; Adamski J; Boor P; Schütt K; Lopaschuk GD; Verma S; Marx N; Lehrke M
    Biochim Biophys Acta Mol Basis Dis; 2020 Aug; 1866(8):165807. PubMed ID: 32353614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics.
    Santos-Gallego CG; Requena-Ibanez JA; San Antonio R; Ishikawa K; Watanabe S; Picatoste B; Flores E; Garcia-Ropero A; Sanz J; Hajjar RJ; Fuster V; Badimon JJ
    J Am Coll Cardiol; 2019 Apr; 73(15):1931-1944. PubMed ID: 30999996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Empagliflozin Improves Left Ventricular Diastolic Dysfunction in a Genetic Model of Type 2 Diabetes.
    Hammoudi N; Jeong D; Singh R; Farhat A; Komajda M; Mayoux E; Hajjar R; Lebeche D
    Cardiovasc Drugs Ther; 2017 Jun; 31(3):233-246. PubMed ID: 28643218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes.
    Habibi J; Aroor AR; Sowers JR; Jia G; Hayden MR; Garro M; Barron B; Mayoux E; Rector RS; Whaley-Connell A; DeMarco VG
    Cardiovasc Diabetol; 2017 Jan; 16(1):9. PubMed ID: 28086951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart.
    Li C; Zhang J; Xue M; Li X; Han F; Liu X; Xu L; Lu Y; Cheng Y; Li T; Yu X; Sun B; Chen L
    Cardiovasc Diabetol; 2019 Feb; 18(1):15. PubMed ID: 30710997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob
    Adingupu DD; Göpel SO; Grönros J; Behrendt M; Sotak M; Miliotis T; Dahlqvist U; Gan LM; Jönsson-Rylander AC
    Cardiovasc Diabetol; 2019 Feb; 18(1):16. PubMed ID: 30732594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice.
    Lin B; Koibuchi N; Hasegawa Y; Sueta D; Toyama K; Uekawa K; Ma M; Nakagawa T; Kusaka H; Kim-Mitsuyama S
    Cardiovasc Diabetol; 2014 Oct; 13():148. PubMed ID: 25344694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empagliflozin attenuates arrhythmogenesis in diabetic cardiomyopathy by normalizing intracellular Ca
    Kadosaka T; Watanabe M; Natsui H; Koizumi T; Nakao M; Koya T; Hagiwara H; Kamada R; Temma T; Karube F; Fujiyama F; Anzai T
    Am J Physiol Heart Circ Physiol; 2023 Mar; 324(3):H341-H354. PubMed ID: 36607794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury.
    Aroor AR; Das NA; Carpenter AJ; Habibi J; Jia G; Ramirez-Perez FI; Martinez-Lemus L; Manrique-Acevedo CM; Hayden MR; Duta C; Nistala R; Mayoux E; Padilla J; Chandrasekar B; DeMarco VG
    Cardiovasc Diabetol; 2018 Jul; 17(1):108. PubMed ID: 30060748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes.
    Mustroph J; Wagemann O; Lücht CM; Trum M; Hammer KP; Sag CM; Lebek S; Tarnowski D; Reinders J; Perbellini F; Terracciano C; Schmid C; Schopka S; Hilker M; Zausig Y; Pabel S; Sossalla ST; Schweda F; Maier LS; Wagner S
    ESC Heart Fail; 2018 Aug; 5(4):642-648. PubMed ID: 30117720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction.
    Yurista SR; Silljé HHW; Oberdorf-Maass SU; Schouten EM; Pavez Giani MG; Hillebrands JL; van Goor H; van Veldhuisen DJ; de Boer RA; Westenbrink BD
    Eur J Heart Fail; 2019 Jul; 21(7):862-873. PubMed ID: 31033127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial.
    Verma S; Mazer CD; Yan AT; Mason T; Garg V; Teoh H; Zuo F; Quan A; Farkouh ME; Fitchett DH; Goodman SG; Goldenberg RM; Al-Omran M; Gilbert RE; Bhatt DL; Leiter LA; Jüni P; Zinman B; Connelly KA
    Circulation; 2019 Nov; 140(21):1693-1702. PubMed ID: 31434508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats.
    Lee HC; Shiou YL; Jhuo SJ; Chang CY; Liu PL; Jhuang WJ; Dai ZK; Chen WY; Chen YF; Lee AS
    Cardiovasc Diabetol; 2019 Apr; 18(1):45. PubMed ID: 30935417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Load-independent effects of empagliflozin contribute to improved cardiac function in experimental heart failure with reduced ejection fraction.
    Connelly KA; Zhang Y; Desjardins JF; Nghiem L; Visram A; Batchu SN; Yerra VG; Kabir G; Thai K; Advani A; Gilbert RE
    Cardiovasc Diabetol; 2020 Feb; 19(1):13. PubMed ID: 32035482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empagliflozin directly improves diastolic function in human heart failure.
    Pabel S; Wagner S; Bollenberg H; Bengel P; Kovács Á; Schach C; Tirilomis P; Mustroph J; Renner A; Gummert J; Fischer T; Van Linthout S; Tschöpe C; Streckfuss-Bömeke K; Hasenfuss G; Maier LS; Hamdani N; Sossalla S
    Eur J Heart Fail; 2018 Dec; 20(12):1690-1700. PubMed ID: 30328645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empagliflozin does not change cardiac index nor systemic vascular resistance but rapidly improves left ventricular filling pressure in patients with type 2 diabetes: a randomized controlled study.
    Rau M; Thiele K; Hartmann NK; Schuh A; Altiok E; Möllmann J; Keszei AP; Böhm M; Marx N; Lehrke M
    Cardiovasc Diabetol; 2021 Jan; 20(1):6. PubMed ID: 33413355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CaMKII and GLUT1 in heart failure and the role of gliflozins.
    Trum M; Wagner S; Maier LS; Mustroph J
    Biochim Biophys Acta Mol Basis Dis; 2020 Jun; 1866(6):165729. PubMed ID: 32068116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats.
    Steven S; Oelze M; Hanf A; Kröller-Schön S; Kashani F; Roohani S; Welschof P; Kopp M; Gödtel-Armbrust U; Xia N; Li H; Schulz E; Lackner KJ; Wojnowski L; Bottari SP; Wenzel P; Mayoux E; Münzel T; Daiber A
    Redox Biol; 2017 Oct; 13():370-385. PubMed ID: 28667906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empagliflozin improved systolic blood pressure, endothelial dysfunction and heart remodeling in the metabolic syndrome ZSF1 rat.
    Park SH; Farooq MA; Gaertner S; Bruckert C; Qureshi AW; Lee HH; Benrahla D; Pollet B; Stephan D; Ohlmann P; Lessinger JM; Mayoux E; Auger C; Morel O; Schini-Kerth VB
    Cardiovasc Diabetol; 2020 Feb; 19(1):19. PubMed ID: 32070346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empagliflozin prevents cardiomyopathy via sGC-cGMP-PKG pathway in type 2 diabetes mice.
    Xue M; Li T; Wang Y; Chang Y; Cheng Y; Lu Y; Liu X; Xu L; Li X; Yu X; Sun B; Chen L
    Clin Sci (Lond); 2019 Aug; 133(15):1705-1720. PubMed ID: 31337673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.